ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

Inner products and Norms

▶ Inner product or dot product of 2 vectors u and v in \mathbb{R}^n :

$$u.v = u_1v_1 + u_2v_2 + \cdots + u_nv_n$$

Calculate u.v when $u=egin{bmatrix}1\\-2\\2\\0\end{bmatrix}$ $v=egin{bmatrix}1\\0\\-1\\5\end{bmatrix}$

If u and v are vectors in \mathbb{R}^n then we can regard u and v as $n \times 1$ matrices. The transpose u^T is a $1 \times n$ matrix, and the matrix product u^Tv is a 1×1 matrix = a scalar.

lacksquare Then note that $u.v = v.u = u^Tv = v^Tu$

Text: 6.1-3 – LS0

14-2

Length of a vector in \mathbb{R}^n

Euclidean norm of a vector u is $||u|| = \sqrt{u.u}$, i.e.,

$$\|u\|=(u.u)^{1/2}=\sqrt{u_1^2+u_2^2+\ldots+u_n^2}$$

- ightharpoonup This is the length of vector u
- If we identify v with a geometric point in the plane, then ||v|| is the standard notion of the length of the line segment from 0 to v.
- ➤ This follows from the Pythagorean Theorem applied to a triangle..
- ➤ A vector of length one is often called a unit vector
- The process of dividing a vector by its length to create a vector of unit length (a unit vector) is called normalizing

Normalize v = [1; -2; 2; 0]. [Matlab notation used]

Important properties

For any scalar α , the length of αv is $|\alpha|$ times the length of v:

$$\|\alpha v\| = |\alpha| \|v\|$$

The length of the sum of any two vectors does not exceed the sum of the lengths of the vectors (Triangle inequality)

$$\|u+v\|\leq \|u\|+\|v\|$$

➤ The Cauchy-Schwartz inequality :

$$|u.v| \leq \|u\| \|v\|$$

4-4 Text: 6.1-3 – LS0

$Distance \ in \ \mathbb{R}^n$

Definition: The distance between u and v, two vectors in \mathbb{R}^n is the length of the vector u-v

ightharpoonup Written as dist(u,v) or d(u,v)

$$d(u,v) = \|u-v\|$$

- lacktriangledown Distance between $u=egin{pmatrix}1\\1\end{pmatrix}$ and $v=egin{pmatrix}4\\-3\end{pmatrix}$
- ➤ See illustration in Example 4 of *text* .

14-5 Text: 6.1-3 – LS

14-5

Orthogonality

- 1. Two vectors u and v are orthogonal if $u \cdot v = 0$. Common notation: $u \perp v$
- 2. A system of vectors $S = \{v_1, \dots, v_n\}$ is orthogonal if $v_i.v_j = 0$ for $i \neq j$.

Pythagoras theorem:

$$u \perp v \iff \|u + v\|^2 = \|u\|^2 + \|v\|^2$$

That is, two vectors $oldsymbol{u}$ and $oldsymbol{v}$ are orthogonal if and only if

$$\|u+v\|^2 = \|u\|^2 + \|v\|^2$$

UHY

Text: 6.1-3 – LSC

4-6

Orthogonal systems (continued)

Show that the following system is orthogonal

$$v_1 = egin{bmatrix} 1 \ 1 \ -1 \end{bmatrix} \quad v_2 = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} \quad v_3 = egin{bmatrix} 2 \ -1 \ 1 \end{bmatrix}$$

Theorem: If $S = \{v_1, ..., v_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent. Hence S is a basis of $\mathrm{span}(S)$.

Definition: An orthogonal basis of a subspace W is a basis of W that is also an orthogonal set.

Let $S=\{v_1,...,v_p\}$ be an orthogonal basis of a subspace W. Then a vector x in W is a linear combination of the v_i 's:

$$x = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_p v_p$$

How can you get the $lpha_i$'s? [Hint: Compute the inner product of x with each v_i .]

Read Section 6.2 of **text** – specifically the paragraph on orthogonal projection (p. 342) for a geometric interpretation.

We say that a system of vectors $S=\{v_1,...,v_p\}$ is orthonormal if it is orthogonal and in addition each v_i has unit length, i.e., $\|v_i\|=1$.

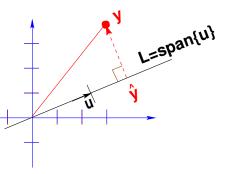
14-7 Text: 6.1-3 – LS

14-8

ext: 6.1-3 – LS0

A brief introduction to least-squares

Consider the following problem: find a member of the subspace $L = \operatorname{span}\{u\}$ that is closest to a vector y that does not belong to L. How would you solvethis geometrically?



 \triangleright The solution \hat{y} is best approximation of y from L

Answer: The line joining y to the best approximation \hat{y} should be orthogonal to u:

$$y - \hat{y} \perp u$$

14-9 Text: 6.1-3 – LS

14-9

- ightharpoonup Since Write \hat{u} is in L, we can write $\hat{u}=lpha u$.
- lacksquare Expand the orthogonality condition: u.y-u.(lpha u)=0
 ightarrow 1

$$lpha = rac{u.y}{u.u}$$

Solve the problem when $u=\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $y=\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and provide a geometric illustration.

➤ See Example 3 in Section 6.2 of text.

-10 Text: 6.1-3 – LS0

14-10

Least-Squares systems - Background

- ightharpoonup Recall orthogonality: $x\perp y$ if $x\cdot y=0$
- \blacktriangleright Equivalently $x \perp y$ if $y^T x = 0$ or $x^T y = 0$
- A zero vector is trivially orthogonal to any vector.
- ightharpoonup A vector x is orthogonal to a subspace S if:

 $x\perp y$ for all $y\in S$

ightharpoonup If $A=[a_1,a_2,\cdots,a_n]$ is a basis of S then

$$x \perp S \quad \leftrightarrow \quad A^T x = 0 \quad \leftrightarrow \quad x^T A = 0$$

The space of all vectors orthogonal to S is a subspace.

Notation: S^{\perp}

igwedge Two subspaces S_1, S_2 are orthogonal to each other when

 $x \perp y$ for all x in S_1 , for all y in S_2

Show that

$$\mathsf{Nul}(A) \perp \mathsf{Col}(A^T)$$
 and $\mathsf{Nul}(A^T) \perp \mathsf{Col}(A)$

Indeed: Ax = 0 means $(A^T)^Tx = 0$. So if $x \in Nul(A)$, it is \bot to the columns of A^T , i.e., to the range of A^T . Second result: replace A by A^T .

 $ru{oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}}}}}}$ mhere Find the subspace of all vectors that are orthogonal by a boling boling

$$[v_1,v_2] = egin{bmatrix} 1 & 1 \ -1 & 0 \ 1 & -1 \end{bmatrix}$$

14-13 Text: 6.5-6 – LS

14-13

Theorem Let A be an m imes n matrix of rank n. Then x^* is the solution of the least-squares problem $\min \|b - Ax\|$

if and only if $b-Ax^*\perp \mathsf{Col}(A)$

if and only if $\overline{A^T(b-Ax^*)}=0$

if and only if $A^TAx^* = A^Tb$

Proof See text.

Least-Squares systems

Problem: Given: an $m \times n$ matrix and a right-hand side b in \mathbb{R}^m , find $x \in \mathbb{R}^n$ which minimizes:

$$\|b-Ax\|$$

Assumption: m>n and ${\sf rank}(A)=n$ ('A is of full ${\sf rank}$ ')

Find equivalent conditions to this assumption

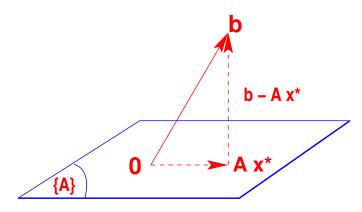
Theorem If A has full rank then A^TA is invertible.

Proof We need to prove: $A^TAx = 0$ implies x = 0. Assume $A^TAx = 0$. Then $x^TA^TAx = 0$ – i.e., $(Ax)^TAx = 0$, or $||Ax||^2 = 0$. This means Ax = 0. But since the columns of A are independent x must be zero. QED.

14-14 Text: 6.5-6 – LS

14-14

Illustration of theorem: x^* is the best approximation to the vector b from the subspace $\operatorname{span}\{A\}$ if and only if $b-Ax^*$ is \bot to the whole subspace $\operatorname{span}\{A\}$. This in turn is equivalent to $A^T(b-Ax^*)=0 \blacktriangleright A^TAx=A^Tb$. Note: $\operatorname{span}\{A\}=\operatorname{Col}(A)=\operatorname{column}\operatorname{space}\operatorname{of}A$



4-16 ______ Text: 6.5-6 – LS

4-15 Text: 6.5-6 – L

14-15

Normal equations

➤ The system

$$A^T A x = A^T b$$

is called the system of normal equations for the matrix $oldsymbol{A}$ and rhs $oldsymbol{b}$

- Its solution is the solution of the least-squares problem $\min \|b Ax\|$
- Find the least solution by solving the normal equations when:

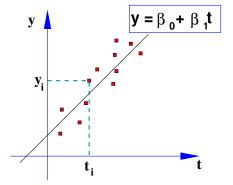
$$A = egin{bmatrix} 1 & 1 & 0 \ 2 & -1 & 1 \ 1 & 1 & -2 \ 0 & 2 & 1 \end{bmatrix} \qquad b = egin{bmatrix} 2 \ 0 \ 4 \ 1 \end{bmatrix}$$

14-17 ______ Text: 6.5-6 – LS

14-17

We want to find best fit in least-squares sense for the equations

$$egin{array}{lll} eta_0 & +eta_1 t_1 &= y_1 \ eta_0 & +eta_1 t_2 &= y_2 \ &: &= : \ eta_0 & +eta_1 t_m &= y_m \end{array}$$



Vsing matrix notation this means: find 'best' approximation to vector y from linear combinations of vectors f_1, f_2 , where

$$y=egin{pmatrix} y_1\ y_2\ dots\ y_m \end{pmatrix},\quad f_1=egin{pmatrix} 1\ 1\ dots\ 1 \end{pmatrix},\quad f_2=egin{pmatrix} t_1\ t_2\ dots\ t_m \end{pmatrix}$$

Application: Linear data fitting

- Experimental data (not accurate) provides measurements y_1, \ldots, y_m of an unknown linear function ϕ at points t_1, \ldots, t_m . Problem: find the 'best' possible approximation to ϕ .
- ➤ Must find:

$$\phi(t) = eta_0 + eta_1 t$$
 s.t. $\phi(t_j) pprox y_j, j = 1, \ldots, m$

- Question: Close in what sense?
- \triangleright Least-squares approximation sense: Find ϕ such that

$$|\phi(t_1)-y_1|^2+|\phi(t_2)-y_2|^2+\cdots+|\phi(t_m)-y_m|^2={\sf Min}$$

4-18 Text: 6.5-6 – LS

14-18

Define

$$F=[f_1,f_2], \quad x=inom{eta_0}{eta_1}$$

- ightharpoonup We want to find x such $\|Fx y\|$ is minimum.
- \blacktriangleright Least-squares linear system. F is $m \times 2$.

The vector x_* minimizes ||y - Fx|| if and only if it is the solution of the normal equations:

$$F^T F x = F^T y$$

20 Text: 65-6 - 15