
ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]
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Inner products and Norms

ä Inner product or dot product of 2 vectors u and v in Rn:

u.v = u1v1 + u2v2 + · · ·+ unvn

- Calculate u.v when u =




1
−2
2
0


 v =




1
0
−1
5




ä If u and v are vectors in Rn then we can regard u and v as
n×1 matrices. The transpose uT is a 1×n matrix, and the matrix
product uTv is a 1× 1 matrix = a scalar.

ä Then note that u.v = v.u = uTv = vTu
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Length of a vector in Rn

Euclidean norm of a vector u is ‖u‖ = √u.u , i.e.,

‖u‖ = (u.u)1/2 =
√
u2
1 + u2

2 + . . .+ u2
n

ä This is the length of vector u

ä If we identify v with a geometric point in the plane, then ‖v‖
is the standard notion of the length of the line segment from 0 to v.

ä This follows from the Pythagorean Theorem applied to a triangle..

ä A vector of length one is often called a unit vector

ä The process of dividing a vector by its length to create a vector
of unit length (a unit vector) is called normalizing

- Normalize v = [1;−2; 2; 0]. [Matlab notation used]
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Important properties

ä For any scalar α, the length of αv is |α| times the length of v:

‖αv‖ = |α|‖v‖

ä The length of the sum of any two vectors does not exceed the
sum of the lengths of the vectors (Triangle inequality)

‖u+ v‖ ≤ ‖u‖+ ‖v‖

ä The Cauchy-Schwartz inequality :

|u.v| ≤ ‖u‖‖v‖
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Distance in Rn

Definition:
The distance between u and v, two vectors in Rn is
the length of the vector u− v

ä Written as dist(u, v) or d(u, v)

d(u, v) = ‖u− v‖

- Distance between u =

(
1
1

)
and v =

(
4
−3
)

ä See illustration in Example 4 of text .
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Orthogonality

1. Two vectors u and v are orthogonal if u.v = 0.
Common notation: u ⊥ v

2. A system of vectors S = {v1, . . . , vn} is orthogonal if vi.vj =
0 for i 6= j.

Pythagoras theorem:

u ⊥ v ⇔ ‖u+ v‖2 = ‖u‖2 + ‖v‖2

That is, two vectors u and v are orthogonal if
and only if

‖u+ v‖2 = ‖u‖2 + ‖v‖2 u

u
+
v

v
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Orthogonal systems (continued)

- Show that the following system is orthogonal

v1 =




1
1
−1


 v2 =



0
1
1


 v3 =




2
−1
1




Theorem: If S = {v1, ..., vp} is an orthogonal set of nonzero

vectors in Rn, then S is linearly independent. Hence S is a basis
of span(S).

Definition:
An orthogonal basis of a subspace W is a basis of W
that is also an orthogonal set.
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- Let S = {v1, ..., vp} be an orthogonal basis of a subspace W .
Then a vector x in W is a linear combination of the vi’s:

x = α1v1 + α2v2 + ...+ αpvp

How can you get the αi’s? [Hint: Compute the inner product of x
with each vi.]

- Read Section 6.2 of text – specifically the paragraph on or-
thogonal projection (p. 342) for a geometric interpretation.

ä We say that a system of vectors S = {v1, ..., vp} is orthonormal
if it is orthogonal and in addition each vi has unit length, i.e., ‖vi‖ =
1.
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A brief introduction to least-squares

ä Consider the following prob-
lem: find a member of the sub-
space L = span{u} that is
closest to a vector y that does not
belong to L. How would you solve
this geometrically?

^
y

L=s
pan

{u}
y

u

ä The solution ŷ is best approximatiob of y from L

Answer: The line joining y to the best approximation ŷ should be
orthogonal to u:

y − ŷ ⊥ u
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ä Since Write û is in L, we can write û = αu.

ä Expand the orthogonality condition: u.y − u.(αu) = 0 →

α = u.y
u.u

- Solve the problem when u =

[
3
1

]
y =

[
2
3

]
and provide a

geometric illustration.

ä See Example 3 in Section 6.2 of text .
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Least-Squares systems – Background

ä Recall orthogonality: x ⊥ y if x.y = 0

ä Equivalently x ⊥ y if yTx = 0 or xTy = 0

ä A zero vector is trivially orthogonal to any vector.

ä A vector x is orthogonal
to a subspace S if: x ⊥ y for all y ∈ S

ä If A = [a1, a2, · · · , an] is a basis of S then

x ⊥ S ↔ ATx = 0 ↔ xTA = 0
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ä The space of all vectors
orthogonal to S is a subspace.

Notation: S⊥

ä Two subspaces S1, S2 are orthogonal to each other when

x ⊥ y for all x in S1, for all y in S2
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- Show that

Nul(A) ⊥ Col(AT) and

Nul(AT) ⊥ Col(A)

ä Indeed: Ax = 0 means (AT)Tx = 0. So if x ∈ Nul(A), it
is ⊥ to the columns of AT , i.e., to the range of AT . Second result:
replace A by AT .

- Find the subspace of all vectors that are orthogonal to span{v1, v2}
where

[v1, v2] =




1 1
−1 0
1 −1



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Least-Squares systems

Problem: Given: an m × n matrix and a right-hand side b in
Rm, find x ∈ Rn which minimizes:

‖b−Ax‖

Assumption: m > n and rank(A) = n (’A is of full rank’)

- Find equivalent conditions to this assumption

Theorem If A has full rank then ATA is invertible.

Proof We need to prove: ATAx = 0 implies x = 0.
Assume ATAx = 0. Then xTATAx = 0 – i.e., (Ax)TAx =
0, or ‖Ax‖2 = 0. This means Ax = 0. But since the columns of
A are independent x must be zero. QED.
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Theorem
Let A be an m×n matrix of rank n. Then x∗ is the
solution of the least-squares problem min ‖b−Ax‖

if and only if b−Ax∗ ⊥ Col(A)

if and only if AT(b−Ax∗) = 0

if and only if ATAx∗ = ATb

Proof See text.
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Illustration of theorem: x∗ is the best approximation to the vector
b from the subspace span{A} if and only if b−Ax∗ is ⊥ to the
whole subspace span{A}. This in turn is equivalent to AT(b −
Ax∗) = 0 ä ATAx = ATb. Note: span{A} = Col(A) =
column space of A

b

b − A x*

0
{A}

A x*
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Normal equations

ä The system

ATAx = ATb

is called the system of normal equations for the matrix A and rhs b

ä Its solution is the solution of the least-squares problem min ‖b−
Ax‖
- Find the least solution by solving the normal equations when:

A =




1 1 0
2 −1 1
1 1 −2
0 2 1


 b =




2
0
4
1



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Application: Linear data fitting

ä Experimental data (not accurate) provides measurements
y1, . . . , ym of an unknown linear functionφ at points t1, . . . , tm.
Problem: find the ‘best’ possible approximation to φ.

ä Must find:

φ(t) = β0 + β1t s.t. φ(tj) ≈ yj, j = 1, . . . ,m

ä Question: Close in what sense?

ä Least-squares approximation sense: Find φ such that

|φ(t1)− y1|2 + |φ(t2)− y2|2 + · · ·+ |φ(tm)− ym|2 = Min
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ä We want to find best
fit in least-squares sense for
the equations

β0 +β1t1 = y1
β0 +β1t2 = y2

... = ...
β0 +β1tm = ym

β β
0 1

y =     +     t

t i

y
i

y

t

ä Using matrix notation this means: find ‘best’ approximation to
vector y from linear combinations of vectors f1, f2, where

y =




y1
y2
...
ym


 , f1 =




1
1
...
1


 , f2 =




t1
t2
...
tm



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ä Define

F = [f1, f2], x =
(
β0

β1

)

ä We want to find x such ‖Fx− y‖ is minimum.

ä Least-squares linear system. F is m× 2.

The vector x∗ mininizes ‖y−Fx‖ if and only if it is the solution
of the normal equations:

F TFx = F Ty
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