Orthogonality - The Gram-Schmidt algorithm

1. Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if $\boldsymbol{u} \cdot \boldsymbol{v}=\mathbf{0}$.
2. They are orthonormal if in addition $\|u\|=\|v\|=1$
3. In this case the matrix $Q=[u, v]$ is such

$$
Q^{T} Q=I
$$

> We say that the system $\{u, v\}$ is orthonormal ..
> .. and that the matrix Q has orthonormal columns
$>$.. or that it is orthogonal [Text reserves this term to $\boldsymbol{n} \times \boldsymbol{n}$ case]

15-2

Example: An orthonormal system $\{u, v\}$

$$
u=\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right) \quad v=\frac{1}{2}\left(\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right)
$$

Generalization: (to \boldsymbol{n} vectors)

$>$ A system of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthogonal if $\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=0$ for $i \neq j$; and orthonormal if in addition $\left\|v_{i}\right\|=1$ for $i=1, \cdots, n$

- A matrix is orthogonal if its columns are orthonormal
$>$ Then: $V=\left[v_{1}, \ldots, v_{n}\right]$ has orthonormal columns
[Note: The term 'orthonormal matrix' is not used. 'orthogonal' is often used for square matrices only (textbook)]

Question: We are given the set $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ which is not orthogonal. How do we get a set of vectors $\left\{q_{1}, q_{2}, \cdots, \boldsymbol{q}_{n}\right\}$ that is orthonormal and spans the same subspace as $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$?

Rationale: Orthonormal systems are easier to use.
Answer: Gram-Schmidt process - to be described next.See section 6.4 of text - example 1 with 2 vectors.
\qquad

The Gram-Schmidt algorithm

Problem: Given a set $\left\{u_{1}, u_{2}\right\}$ how can we generate another set $\left\{q_{1}, q_{2}\right\}$ from linear combinations of u_{1}, u_{2} so that $\left\{q_{1}, q_{2}\right\}$ is orthonormal?

Step 1 Define first vector: $\boldsymbol{q}_{1}=\boldsymbol{u}_{1} /\left\|\boldsymbol{u}_{1}\right\|$ ('Normalization')
Step 2: Orthogonalize \boldsymbol{u}_{2} against $\boldsymbol{q}_{1}: \hat{\boldsymbol{q}}=\boldsymbol{u}_{2}-\left(\boldsymbol{u}_{2} . \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}$
Step 3 Normalize to get second vector: $q_{2}=\hat{q} /\|\hat{q}\|$
Result: $\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$ is an orthonormal set of vectors which spans the same space as $\left\{u_{1}, u_{2}\right\}$.
\qquad
15-5
${ }^{15-5}$

$$
u_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right) \quad u_{2}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right)
$$

Step 1: $\boldsymbol{q}_{1}=\frac{1}{2}\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right) \begin{aligned} & \text { Step 2: First compute } \\ & \boldsymbol{u}_{2} \cdot \boldsymbol{q}_{1}=\ldots=2 \text {. Then: }\end{aligned}$

$$
\hat{q}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right)-2 \times \frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right) \quad q_{2}=\frac{1}{2}\left(\begin{array}{c}
\text { Step 3: } \\
1 \\
1 \\
-1 \\
1
\end{array}\right)
$$

The operations in step 2 can be written as

$$
\hat{q}:=O R T H\left(u_{2}, q_{1}\right)
$$

ORTH ($\boldsymbol{u}_{2}, \boldsymbol{q}_{1}$): "orthogonalize \boldsymbol{u}_{2} against \boldsymbol{q}_{1} "
$>\boldsymbol{O R T H} \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{q})$ denotes the operation of orthogonalizing a vector \boldsymbol{x} against a unit vector \boldsymbol{q}.

ORTH $(x, q)=x-(x . q) q$

$$
z=O R T H(x, q)
$$

\qquad
15-6

Generalization: 3 vectors

$>$ How to generalize to 3 or more vectors?
$>$ For 3 vectors: $\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right]$

- First 2 steps are the same $\rightarrow \boldsymbol{q}_{1}, \boldsymbol{q}_{2}$
- Then orthogonalize \boldsymbol{u}_{3} against \boldsymbol{q}_{1} and \boldsymbol{q}_{2} :

$$
\hat{q}=u_{3}-\left(u_{3} . q_{1}\right) q_{1}-\left(u_{3} . q_{2}\right) q_{2}
$$

- Finally, normalize:

$$
q_{3}=\hat{q} /\|\hat{q}\|
$$

General problem: Given $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right]$, compute $Q=$ $\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right]$ which is orthonormal and s.t. $\operatorname{Col}(\boldsymbol{Q})=\operatorname{Col}(\boldsymbol{U})$.
15.8 Tot: 6.4-QR
$\xrightarrow{\text { 15-8 } \longrightarrow}$

ALGORITHM : 1. Classical Gram-Schmidt

```
1. For \(j=1: n\) Do:
    \(\hat{q}=u_{j}\)
    For \(i=1: j-1\)
            \(\hat{q}:=\hat{q}-\left(u_{j} \cdot q_{i}\right) q_{i} \quad / \operatorname{set} r_{i j}=\left(u_{j} \cdot q_{i}\right)\)
        End
        \(q_{j}:=\hat{q} /\|\hat{q}\| \quad / \operatorname{set} r_{j j}=\|\hat{q}\|\)
    End
```

$>$ All \boldsymbol{n} steps can be completed iff $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$ are linearly independent.
$>$ Define a matrix R as follows

$$
r_{i j}=\left\{\begin{array}{lll}
u_{j} . q_{i} & \text { if } i<j \text { (see line 4) } \\
\|\hat{q}\| & \text { if } i=j \text { (see line 6) } \\
0 & \text { if } i>j \text { (lower part) }
\end{array}\right.
$$

15-9

15-9
Q has orthonormal columns. It satisfies:

$$
Q^{T} Q=I
$$

> It is said to be orthogonal
$>\boldsymbol{R}$ is upper triangularWhat is the inverse of an orthogonal $n \times n$ matrix?Show that when $U \in \mathbb{R}^{m \times n}$ the total cost of Gram-Schmidt is $\approx 2 m n^{2}$.

We have from the algorithm: (For $j=1,2, \cdots, n$)

$$
u_{j}=r_{1 j} q_{1}+r_{2 j} q_{2}+\ldots+r_{j j} q_{j}
$$

If $U=\left[u_{1}, u_{2}, \ldots, u_{n}\right], Q=\left[q_{1}, q_{2}, \ldots, \boldsymbol{q}_{n}\right]$, and if \boldsymbol{R} is the $n \times n$ upper triangular matrix defined above:

$$
R=\left\{r_{i j}\right\}_{i, j=1, \ldots, n}
$$

then the above relation can be written as

$$
U=Q R
$$

$>$ This is called the QR factorization of \boldsymbol{U}.
\qquad
15-10

Another decomposition:
A matrix \boldsymbol{U}, with linearly independent columns, is the product of an orthogonal matrix \boldsymbol{Q} and a upper triangular matrix \boldsymbol{R}.

R is upper triangularOrthonormalize the system of vectors:

$$
U=\left[u_{1}, u_{2}, u_{3}\right]=\left(\begin{array}{ccc}
1 & -4 & 3 \\
-1 & 2 & -1 \\
1 & 0 & 1 \\
1 & -2 & -1
\end{array}\right)
$$

For this example:1) what is Q ? what is R ?2) Verify (matlab) that $\boldsymbol{U}=\boldsymbol{Q R}$3) Compute $\boldsymbol{Q}^{T} \boldsymbol{Q}$. [Result should be the identity matrix]

Step 3: $\hat{\boldsymbol{q}}_{3}=\boldsymbol{u}_{3}-\left(\boldsymbol{u}_{3} . \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}-\left(\boldsymbol{u}_{3} . \boldsymbol{q}_{2}\right) \boldsymbol{q}_{2} \rightarrow$
$\hat{q}_{3}=\left[\begin{array}{c}3 \\ -1 \\ 1 \\ -1\end{array}\right]-\frac{4}{2} \times \frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]-\frac{-2}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ 1 \\ -2\end{array}\right]$
$q_{3}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}1 \\ 0 \\ 1 \\ -2\end{array}\right] \quad r_{13}=2 ; \quad r_{23}=-\sqrt{2} ; \quad r_{33}=\sqrt{6}$

$$
Q=\left[\begin{array}{ccc}
1 / 2 & -1 / \sqrt{2} & 1 / \sqrt{6} \\
-1 / 2 & 0 & 0 \\
1 / 2 & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / 2 & 0 & -2 / \sqrt{6}
\end{array}\right] \quad R=\left[\begin{array}{ccc}
2 & -4 & 2 \\
0 & \sqrt{8} & -\sqrt{2} \\
0 & 0 & \sqrt{6}
\end{array}\right]
$$

Solution: [values for \boldsymbol{R} are in red]
Step 1: $q_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right] r_{11}=\left\|u_{1}\right\|=2$
Step 2: $\hat{q}_{2}=\boldsymbol{u}_{2}-\left(\boldsymbol{u}_{2} \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1} \rightarrow$
$\hat{q}_{2}=\left[\begin{array}{c}-4 \\ 2 \\ 0 \\ -2\end{array}\right]-\frac{-8}{2} \times \frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-2 \\ 0 \\ 2 \\ 2\end{array}\right] \quad r_{12}=\frac{-8}{2}=-4$
$\rightarrow q_{2}=\frac{\hat{q}_{2}}{\left\|\hat{q}_{2}\right\|}=\frac{1}{\sqrt{8}}\left[\begin{array}{c}-2 \\ 0 \\ 2 \\ 0\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right] \quad r_{22}=\sqrt{8}$
\qquad

