

15-3

Text: 6.4 – QR

15-4

15-3

The Gram-Schmidt algorithm

Problem: Given a set $\{u_1, u_2\}$ how can we generate another set $\{q_1, q_2\}$ from linear combinations of u_1, u_2 so that $\{q_1, q_2\}$ is orthonormal?

Step 1 Define first vector: $q_1 = u_1 / ||u_1||$ ('Normalization')

Step 2: Orthogonalize u_2 against q_1 : $\hat{q} = u_2 - (u_2.q_1) q_1$

Step 3 Normalize to get second vector: $q_2 = \hat{q}/\|\hat{q}\|$

Result: $\{q_1, q_2\}$ is an orthonormal set of vectors which spans the same space as $\{u_1, u_2\}$.

> The operations in step 2 can be written as

 $\hat{q} := ORTH(u_2, q_1)$

> ORTH(x, q) denotes the operation of orthogonalizing a vector x against a unit vector q.

ORTH(x,q) = x - (x.q)q

ALGORITHM : 1 . Classical Gram-Schmidt

 1. For j = 1 : n Do:

 2. $\hat{q} = u_j$

 3. For i = 1 : j - 1

 4. $\hat{q} := \hat{q} - (u_j . q_i)q_i$ / set $r_{ij} = (u_j . q_i)$

 5. End

 6. $q_j := \hat{q} / \|\hat{q}\|$ / set $r_{jj} = \|\hat{q}\|$

 7. End

> All n steps can be completed iff u_1, u_2, \ldots, u_n are linearly independent.

> Define a matrix R as $r_{ij} = \left\{ egin{array}{c} r_{ij} = \\ follows \end{array} \right.$	$egin{array}{l} oldsymbol{u}_j.oldsymbol{q}_i \ \ \widehat{q} \ \ oldsymbol{0} \end{array}$	if if if	
	U	IT	i > j (lower part)

 \succ Q has orthonormal columns. It satisfies:

 $Q^TQ = I$

15-9

- It is said to be orthogonal
- **R** is upper triangular
- Multiply What is the inverse of an orthogonal $n \times n$ matrix?
- Show that when $U \in \mathbb{R}^{m \times n}$ the total cost of Gram-Schmidt is $\approx 2mn^2$.

15-11

➤ We have from the algorithm: (For j = 1, 2, ..., n) $u_j = r_{1j}q_1 + r_{2j}q_2 + ... + r_{jj}q_j$ > If $U = [u_1, u_2, ..., u_n]$, $Q = [q_1, q_2, ..., q_n]$, and if R is the $n \times n$ upper triangular matrix defined above: $R = \{r_{ij}\}_{i,j=1,...,n}$

then the above relation can be written as

U = QR

 \blacktriangleright This is called the QR factorization of U.

Another decomposition:

15-10

A matrix U, with linearly independent columns, is the product of an orthogonal matrix Q and a upper triangular matrix R.

15-9

Text: 6.4 – QR

15-10

15-12

Text: 6.4 – QR

Orthonormalize the system of vectors:

$$U = [u_1, u_2, u_3] \; = \; egin{pmatrix} 1 & -4 & 3 \ -1 & 2 & -1 \ 1 & 0 & 1 \ 1 & -2 & -1 \end{pmatrix}$$

For this example:

15-13

15-15

- \blacksquare 1) what is **Q**? what is **R**?
- \blacksquare 2) Verify (matlab) that U = QR
- \square 3) Compute $Q^T Q$. [Result should be the identity matrix]

15-13

Text: 6.4 – QR

Text: 6.4 - QR

$$\begin{array}{c|c} Step \ 3: & \hat{q}_3 = u_3 - (u_3.q_1)q_1 - (u_3.q_2)q_2 \rightarrow \\ \hat{q}_3 = \begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \end{bmatrix} - \frac{4}{2} \times \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} - \frac{-2}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -2 \end{bmatrix} \\ q_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ -2 \end{bmatrix} \quad r_{13} = 2; \quad r_{23} = -\sqrt{2}; \quad r_{33} = \sqrt{6} \end{array}$$

$$Q = \begin{bmatrix} 1/2 & -1/\sqrt{2} & 1/\sqrt{6} \\ -1/2 & 0 & 0 \\ 1/2 & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/2 & 0 & -2/\sqrt{6} \end{bmatrix} \quad R = \begin{bmatrix} 2 & -4 & 2 \\ 0 & \sqrt{8} & -\sqrt{2} \\ 0 & 0 & \sqrt{6} \end{bmatrix}$$

15-15

Solution: [values for *R* are in red]

Step 1:
$$q_1 = \frac{u_1}{\|u_1\|} = \frac{1}{2} \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix} r_{11} = \|u_1\| = 2$$

Step 2: $\hat{q}_2 = u_2 - (u_2 \cdot q_1)q_1 \rightarrow$
 $\hat{q}_2 = \begin{bmatrix} -4\\ 2\\ 0\\ -2 \end{bmatrix} - \frac{-8}{2} \times \frac{1}{2} \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -2\\ 0\\ 2\\ 2\\ 2 \end{bmatrix} r_{12} = \frac{-8}{2} = -4$
 $\rightarrow q_2 = \frac{\hat{q}_2}{\|\hat{q}_2\|} = \frac{1}{\sqrt{8}} \begin{bmatrix} -2\\ 0\\ 2\\ 0\\ 2\\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 0\\ 1\\ 0 \end{bmatrix} r_{22} = \sqrt{8}$

Solving LS systems via QR factorization

In practice: not a good idea to solve the system $A^T A x = A^T b$. Use the QR factorization instead. How?

> Answer in the form of an exercise

Problem: Ax pprox b in least-squares sense

 $m{A}$ is an $m{m} imes m{n}$ (full-rank) matrix. Consider the QR factorization of $m{A}$

$$A = QR$$

Approach 1: Write the normal equations – then 'simplify'

Approach 2: Write the condition $b - Ax \perp Col(A)$ and recall that A and Q have the same column space.

▲ Total cost?

15-16