
THE GRAM-SCHMIDT ALGORITHM AND QR [6.4 + 6.5]
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Orthogonality – The Gram-Schmidt algorithm

1. Two vectors u and v are orthogonal if u.v = 0.

2. They are orthonormal if in addition ‖u‖ = ‖v‖ = 1

3. In this case the matrix Q = [u, v] is such

QTQ = I

ä We say that the system {u, v} is orthonormal ..

ä .. and that the matrix Q has orthonormal columns

ä .. or that it is orthogonal [Text reserves this term to n×n case]
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Example: An orthonormal system {u, v}

u =
1

2




1
−1
1
1


 v =

1

2




1
1
−1
1




Generalization: (to n vectors)

ä A system of vectors {v1, . . . , vn} is orthogonal if vi.vj = 0 for
i 6= j; and orthonormal if in addition ‖vi‖ = 1 for i = 1, · · · , n
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ä A matrix is orthogonal if its columns are orthonormal

ä Then: V = [v1, . . . , vn] has orthonormal columns

[Note: The term ’orthonormal matrix’ is not used. ‘orthogonal’ is
often used for square matrices only (textbook)]

Question: We are given the set {u1, u2, · · · , un} which is not
orthogonal. How do we get a set of vectors {q1, q2, · · · , qn} that
is orthonormal and spans the same subspace as {u1, u2, · · · , un}?

Rationale: Orthonormal systems are easier to use.

Answer: Gram-Schmidt process - to be described next.

- See section 6.4 of text – example 1 with 2 vectors.
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The Gram-Schmidt algorithm

Problem: Given a set {u1, u2} how can we generate another set
{q1, q2} from linear combinations of u1, u2 so that {q1, q2} is
orthonormal?

Step 1 Define first vector: q1 = u1/‖u1‖ (‘Normalization’)

Step 2: Orthogonalize u2 against q1: q̂ = u2 − (u2.q1) q1

Step 3 Normalize to get second vector: q2 = q̂/‖q̂‖
ä Result: {q1, q2} is an orthonormal set of vectors which spans
the same space as {u1, u2}.
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ä The operations in step 2 can be written as

q̂ := ORTH(u2, q1)

ORTH (u2, q1): “orthogonalize u2 against q1”

ä ORTH(x, q) denotes the op-
eration of orthogonalizing a vector
x against a unit vector q.

ORTH(x, q) = x− (x.q)q
q

xz

 (x,q) 

z = ORTH(x, q)
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Example: u1 =




1
−1
1
1


 u2 =




2
0
0
2




Step 1: q1 = 1
2




1
−1
1
1




Step 2: First compute
u2.q1 = ... = 2. Then:

q̂ =




2
0
0
2


− 2× 1

2




1
−1
1
1


 =




1
1
−1
1




Step 3: Normalize

q2 = 1
2




1
1
−1
1
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Generalization: 3 vectors

ä How to generalize to 3 or more vectors?

ä For 3 vectors : [u1, u2, u3]

• First 2 steps are the same→ q1, q2

• Then orthogonalize u3 against q1 and q2:

q̂ = u3 − (u3.q1)q1 − (u3.q2)q2

• Finally, normalize: q3 = q̂/‖q̂‖

General problem: Given U = [u1, . . . , un], compute Q =
[q1, . . . , qn] which is orthonormal and s.t. Col(Q) = Col(U).
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ALGORITHM : 1 Classical Gram-Schmidt

1. For j = 1 : n Do:
2. q̂ = uj

3. For i = 1 : j − 1
4. q̂ := q̂ − (uj.qi)qi / set rij = (uj.qi)
5. End
6. qj := q̂/‖q̂‖ / set rjj = ‖q̂‖
7. End

ä All n steps can be completed iff u1, u2, . . . , un are linearly
independent.

ä Define a
matrix R as
follows

rij =





uj.qi if i < j (see line 4)
‖q̂‖ if i = j (see line 6)
0 if i > j (lower part)
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ä We have from the algorithm: (For j = 1, 2, · · · , n)

uj = r1jq1 + r2jq2 + . . . + rjjqj

ä If U = [u1, u2, . . . , un], Q = [q1, q2, . . . , qn], and if R is
the n× n upper triangular matrix defined above:

R = {rij}i,j=1,...,n

then the above relation can be written as

U = QR

ä This is called the QR factorization of U .
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ä Q has orthonormal columns. It satisfies:

QTQ = I

ä It is said to be orthogonal

ä R is upper triangular

- What is the inverse of an orthogonal n× n matrix?

- Show that when U ∈ Rm×n the total cost of Gram-Schmidt
is ≈ 2mn2.
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Another decomposition:

A matrix U , with linearly independent columns, is the product of an
orthogonal matrix Q and a upper triangular matrix R.

= Q

R

*

Q is orthogonalOriginal 
matrix

R is upper
triangular

      

U

Q = I TQ( )
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- Orthonormalize the system of vectors:

U = [u1, u2, u3] =




1 −4 3
−1 2 −1
1 0 1
1 −2 −1




For this example:

- 1) what is Q? what is R?

- 2) Verify (matlab) that U = QR

- 3) Compute QTQ. [Result should be the identity matrix]
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Solution: [values for R are in red]

Step 1: q1 = u1

‖u1‖ =
1
2




1
−1
1
1


 r11 = ‖u1‖ = 2

Step 2: q̂2 = u2 − (u2.q1)q1 →

q̂2 =




−4
2
0
−2


−

−8
2
× 1

2




1
−1
1
1


 =




−2
0
2
2


 r12 = −8

2
= −4

→ q2 = q̂2
‖q̂2‖ =

1√
8




−2
0
2
0


 = 1√

2




−1
0
1
0


 r22 =

√
8

15-14

Step 3: q̂3 = u3 − (u3.q1)q1 − (u3.q2)q2→

q̂3 =




3
−1
1
−1


−

4
2
× 1

2




1
−1
1
1


−

−2√
2
× 1√

2




−1
0
1
0


 =




1
0
1
−2




q3 = 1√
6




1
0
1
−2


 r13 = 2; r23 = −√2; r33 =

√
6

Q =




1/2 −1/√2 1/
√
6

−1/2 0 0

1/2 1/
√
2 1/

√
6

1/2 0 −2/√6


 R =



2 −4 2

0
√
8 −√2

0 0
√
6
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Solving LS systems via QR factorization

ä In practice: not a good idea to solve the system ATAx = ATb.
Use the QR factorization instead. How?

ä Answer in the form of an exercise

Problem: Ax ≈ b in least-squares sense

A is an m × n (full-rank) matrix.
Consider the QR factorization of A

A = QR

- Approach 1: Write the normal equations – then ‘simplify’

- Approach 2: Write the condition b−Ax ⊥ Col(A) and recall
that A and Q have the same column space.

- Total cost?
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