EIGENVALE PROBLEMS AND THE SVD. [5.1 TO $5.3 \& 7.4]$

Eigenvalue Problems. Their origins

- Structural Engineering $[\mathbf{K u}=\boldsymbol{\lambda} \boldsymbol{M u} u$
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Quantum chemistry and Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.

Eigenvalue Problems. Introduction

Let \boldsymbol{A} an $\boldsymbol{n} \times \boldsymbol{n}$ real nonsymmetric matrix. The eigenvalue problem:

$$
A u=\lambda u
$$

$\lambda \in \mathbb{C}$: eigenvalue
$u \in \mathbb{C}^{n}$: eigenvector

Example:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right)
$$

$>\lambda_{1}=1$ with eigenvector $u_{1}=\binom{0}{1}$
$>\lambda_{2}=2$ with eigenvector $u_{2}=\binom{1}{2}$
$>$ The set of eigenvalues of \boldsymbol{A} is called the spectrum of \boldsymbol{A}
\qquad
16-2

Basic definitions and properties

A scalar $\boldsymbol{\lambda}$ is called an eigenvalue of a square matrix \boldsymbol{A} if there exists a nonzero vector \boldsymbol{u} such that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. The vector \boldsymbol{u} is called an eigenvector of \boldsymbol{A} associated with $\boldsymbol{\lambda}$.

The set of all eigenvalues of \boldsymbol{A} is the 'spectrum' of \boldsymbol{A}. Notation: $\Lambda(A)$.
$>\boldsymbol{\lambda}$ is an eigenvalue iff the columns of $\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}$ are linearly dependent.
$>\lambda$ is an eigenvalue iff $\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I})=0$
(© Compute the eigenvalues of the matrix:Eigenvectors?

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Basic definitions and properties (cont.)

> An eigenvalue is a root of the Characteristic polynomial:

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)
$$

$>$ So there are n eigenvalues (counted with their multiplicities).
> The multiplicity of these eigenvalues as roots of $\boldsymbol{p}_{\boldsymbol{A}}$ are called algebraic multiplicities.

Find all the eigenvalues of the matrix:

$$
A=\left[\begin{array}{rrr}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Find the associated eigenvectors.How many eigenvectors can you find if a_{33} is replaced by one?Same questions if a_{12} is replaced by zero.What are all the eigenvalues of a diagonal matrix?
> Two matrices \boldsymbol{A} and \boldsymbol{B} are similar if there exists an invertible matrix \boldsymbol{V} such that

$$
A=V B V^{-1}
$$

> \boldsymbol{A} and \boldsymbol{B} represent the same linear mapping in 2 different bases.

* Explain why [Hint: Assume a column of V represents one basis vector of the new basis expressed in the old basis...]

Solution: Let \boldsymbol{A} be linear mapping represented in standard basis e_{1}, \cdots, e_{n} (the 'old' basis). Consider a 'new' basis $v_{1}, v_{2}, \cdots, v_{n}$. Assume each \boldsymbol{v}_{i} is expressed in the old basis and let $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$. A vector s in the new basis is expressed as $V s$ in the old basis (explain). Linear mapping applied to this vector is $t=A(V s)$. This is expressed in old basis. Then $t=\boldsymbol{V}\left(\boldsymbol{V}^{-1} \boldsymbol{A} \boldsymbol{V} \boldsymbol{s}\right)$ expresses the result in new basis: $B=V^{-1} A V s$ represents mapping \boldsymbol{A} in basis \boldsymbol{V}.

Show: \boldsymbol{A} and \boldsymbol{B} have the same eigenvalues. What about eigenvectors?
Definition: \boldsymbol{A} is diagonalizable if it is similar to a diagonal matrix
> Note: not all matrices are diagonalizable
$>$ Theorem 1: A matrix is diagonalizable iff it has n linearly independent eigenvectors

Example: Which of these matrices is/are diagonalizable

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Theorem 2: The eigenvectors associated with distinct eigenvalues are linearly independentProve the result for 2 distinct eigenvalues
Solution: Let $\boldsymbol{A} \boldsymbol{u}_{1}=\boldsymbol{\lambda}_{1} \boldsymbol{u}_{1}$ and $\boldsymbol{A} \boldsymbol{u}_{2}=\boldsymbol{\lambda}_{2} \boldsymbol{u}_{2}$ with $\boldsymbol{\lambda}_{1} \neq \boldsymbol{\lambda}_{2}$. We prove that if $\alpha_{1} u_{1}+\alpha_{2} u_{2}=0$ then we must have $\alpha_{1}=$ $\alpha_{2}=0$. Multiply $\alpha_{1} u_{1}+\alpha_{2} u_{2}=0$ by $A-\lambda_{1} I$: then

$$
\begin{aligned}
\left(A-\lambda_{1} I\right)\left[\alpha_{1} u_{1}+\alpha_{2} u_{2}\right] & =0 \rightarrow \\
\alpha_{1}\left(A-\lambda_{1} I\right) u_{1}+\alpha_{2}\left(A-\lambda_{1} I\right) u_{2} & =0 \rightarrow \\
0+\alpha_{2}\left(\lambda_{2}-\lambda_{1} I\right) u_{2} & =0
\end{aligned}
$$

Since $\boldsymbol{\lambda}_{2} \neq \lambda_{1}$ we must have $\boldsymbol{\alpha}_{2}=0$. Similar argument will show that $\alpha_{1}=0$.
> Consequence: if all eigenvalues of a matrix \boldsymbol{A} are simple then \boldsymbol{A} is diagonalizable.

Theorem 3: A symmetric matrix has real eigenvalues and is diagonalizable. In addition \boldsymbol{A} admits a set of orthonormal eigenvectors.

Transformations that Preserve Eigenstructure

Shift $\quad B=A-\sigma I: A v=\lambda v \Longleftrightarrow B v=(\lambda-\sigma) v$ eigenvalues move, eigenvectors remain the same.

Poly- $\quad B=p(A)=\alpha_{0} I+\cdots+\alpha_{n} A^{n}: \quad A v=\lambda v \Longleftrightarrow$ nomial $\quad B v=p(\lambda) v$
eigenvalues transformed, eigenvectors remain the same.
Invert $\quad B=A^{-1}: A v=\lambda \boldsymbol{d} \boldsymbol{B} \boldsymbol{v}=\boldsymbol{\lambda}^{-1} \boldsymbol{v}$
eigenvalues inverted, eigenvectors remain the same.
Let \boldsymbol{A} be diagonalizable. How would you compute $\boldsymbol{p}(\boldsymbol{A})$ if \boldsymbol{p} is a high degree polynomial? [Hint: start with \boldsymbol{A}^{k}]

The Singular Value Decomposition (SVD)

Theorem For any matrix $A \in \mathbb{R}^{m \times n}$ there exist orthogonal matrices $\boldsymbol{U} \in \mathbb{R}^{m \times m}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ such that

$$
A=U \Sigma V^{T}
$$

where Σ is a diagonal matrix with entries $\sigma_{i i} \geq 0$.

$$
\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{p p} \geq 0 \text { with } p=\min (n, m)
$$

$>$ The $\sigma_{i i}$ are the singular values of \boldsymbol{A}.
$>\sigma_{i i}$ is denoted simply by σ_{i}

Case 1:

$2:$

A few properties
Assume that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0 \text { and } \sigma_{r+1}=\cdots=\sigma_{p}=0
$$

Then:

- $\operatorname{rank}(A)=r=$ number of nonzero singular values.
- $\operatorname{Ran}(A)=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$
- $\operatorname{Null}(A)=\operatorname{span}\left\{v_{r+1}, v_{r+2}, \ldots, v_{n}\right\}$
- The matrix \boldsymbol{A} admits the SVD expansion:

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

Rank and approximate rank of a matrix

$>$ The number of nonzero singular values r equals the rank of \boldsymbol{A}

- In practice: zero singular values replaced by small values due to noise.
> Can define approximate rank: rank obtained by 'neglecting smallest singular values'

Example: Let \boldsymbol{A} a matrix with singular values
$\sigma_{1}=10.0 ;$
$\sigma_{2}=6.0 ;$
$\sigma_{3}=3.0 ;$
$\sigma_{4}=0.030 ;$
$\sigma_{5}=0.0130 ;$
$\sigma_{6}=0.0010 ;$
$>\sigma_{4}, \sigma_{5}, \sigma_{6}$, are likely due to noise - so approximate rank is 3 .
> Rigorous way of stating this exists - but beyond scope of this class [see csci 5304]

Right and Left Singular vectors:

$$
\begin{aligned}
\boldsymbol{A} v_{i} & =\sigma_{i} u_{i} \\
\boldsymbol{A}^{T} u_{j} & =\sigma_{j} v_{j}
\end{aligned}
$$

$>$ Consequence $A^{T} A v_{i}=\sigma_{i}^{2} v_{i}$ and $A A^{T} u_{i}=\sigma_{i}^{2} u_{i}$
$>$ Right singular vectors ($\boldsymbol{v}_{i}{ }^{\prime}$ s) are eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$
$>$ Left singular vectors (\boldsymbol{u}_{i} 's) are eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{T}$
$>$ Possible to get the SVD from eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{T}$ and $\boldsymbol{A}^{T} \boldsymbol{A}$

- but: difficulties due to non-uniqueness of the SVD

Information Retrieval: Vector Space Model

- Given: a collection of documents (columns of a matrix \boldsymbol{A}) and a query vector \boldsymbol{q}.

- Collection represented by an $\boldsymbol{m} \times \boldsymbol{n}$ term by document matrix with $a_{i j}=L_{i j} G_{i} N_{j}$
$>$ Queries ('pseudo-documents') \boldsymbol{q} are represented similarly to a column
\qquad 16-19 2

A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

- Regularization methods require the solution of a least-squares linear system $A x=b$ approximately in the 'dominant singular' space of \boldsymbol{A}
> The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A
> Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Vector Space Model - continued

$>$ Problem: find a column of \boldsymbol{A} that best matches \boldsymbol{q}
Similarity metric: angle between column \boldsymbol{c} and query \boldsymbol{q}

$$
\cos \theta(c, q)=\frac{\left|c^{T} q\right|}{\|c\|\|q\|}
$$

> To rank all documents we need to compute

$$
s=A^{T} \boldsymbol{q}
$$

> $s=$ similarity vector.
> Literal matching - not very effective. > Problems with literal matching: polysemy, synonymy,...
16-20
16-20

Use of the SVD

> Solution: Extract intrinsic information - or underlying "semantic" information -

- LSI: replace matrix \boldsymbol{A} by a low rank approximation using the Singular Value Decomposition (SVD)

$$
A=U \Sigma V^{T} \quad \rightarrow \quad A_{k}=U_{k} \Sigma_{k} V_{k}^{T}
$$

$>\boldsymbol{U}_{k}$: term space, \boldsymbol{V}_{k} : document space.
> Refer to this as Truncated SVD (TSVD) approach
> Amounts to replacing small sing. values of \boldsymbol{A} by zeros
New similarity vector:

$$
s_{k}=A_{k}^{T} \boldsymbol{q}=\boldsymbol{V}_{k} \Sigma_{k} \boldsymbol{U}_{k}^{T} \boldsymbol{q}
$$

16-21

Raw matrix (before scaling).

$$
A=\left|\begin{array}{cccccccc}
d 1 & d 2 & d 3 & d 4 & d 5 & d 6 & d 7 & d 8 \\
\hline & 1 & & 1 & 1 & & 1 & \\
& 1 & 1 & & & & & 1
\end{array}\right| l \begin{aligned}
& \text { chi } \\
& \\
& \\
& \\
& \\
& \\
& \\
& 1
\end{aligned}
$$Get the anwser to the query Child Safety, so

$$
q=\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

using cosines and then using LSI with $k=3$.
\qquad

