
EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4]
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Eigenvalue Problems. Introduction

Let A an n×n real nonsymmetric matrix. The eigenvalue problem:

Au = λu λ ∈ C : eigenvalue
u ∈ Cn : eigenvector

Example:

A =

(
2 0
2 1

)

ä λ1 = 1 with eigenvector u1 =
(

0
1

)

ä λ2 = 2 with eigenvector u2 =
(

1
2

)

ä The set of eigenvalues of A is called the spectrum of A
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Eigenvalue Problems. Their origins

• Structural Engineering [Ku = λMu]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Quantum chemistry and Electronic structure calculations [Schrödinger
equation..]

• Application of new era: page ranking on the world-wide web.
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Basic definitions and properties

A scalar λ is called an eigenvalue of a square matrix A if there exists
a nonzero vector u such that Au = λu. The vector u is called an
eigenvector of A associated with λ.

ä The set of all eigenvalues of A is the ‘spectrum’ of A. Notation:
Λ(A).

ä λ is an eigenvalue iff the columns of A − λI are linearly
dependent.

ä λ is an eigenvalue iff det(A− λI) = 0

- Compute the eigenvalues of
the matrix:
- Eigenvectors?

A =




2 1 0
−1 0 1
0 1 2



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Basic definitions and properties (cont.)

ä An eigenvalue is a root of the Characteristic polynomial:

pA(λ) = det(A− λI)

ä So there are n eigenvalues (counted with their multiplicities).

ä The multiplicity of these eigenvalues as roots of pA are called
algebraic multiplicities.
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- Find all the eigenvalues of the matrix:

A =




1 2 −4
0 1 2
0 0 2




Find the associated eigenvectors.

- How many eigenvectors can you find if a33 is replaced by one?

- Same questions if a12 is replaced by zero.

- What are all the eigenvalues of a diagonal matrix?

16-6 Text: 5.1-5.3 – EIG

16-6

ä Two matrices A and B are similar if there exists an invertible
matrix V such that

A = V BV −1

ä A and B represent the same linear mapping in 2 different bases.

- Explain why [Hint: Assume a column of V represents one basis
vector of the new basis expressed in the old basis...]

Solution: Let A be linear mapping represented in standard basis
e1, · · · , en (the ’old’ basis). Consider a ‘new’ basis v1, v2, · · · , vn.
Assume each vi is expressed in the old basis and let V = [v1, v2, ..., vn].
A vector s in the new basis is expressed as V s in the old basis
(explain). Linear mapping applied to this vector is t = A(V s).
This is expressed in old basis. Then t = V (V −1AV s) expresses
the result in new basis: B = V −1AV s represents mapping A in
basis V .
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- Show: A and B have the same eigenvalues. What about
eigenvectors?

Definition: A is diagonalizable if it is similar to a diagonal matrix

ä Note : not all matrices are diagonalizable

ä Theorem 1: A matrix is diagonalizable iff it has n linearly
independent eigenvectors
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Example: Which of these matrices is/are diagonalizable

A =




1 1 0
0 2 1
0 0 3


 B =




1 1 0
0 1 1
0 0 1


 C =




1 1 0
0 1 1
0 0 2




ä Theorem 2: The eigenvectors associated with distinct eigenval-
ues are linearly independent
- Prove the result for 2 distinct eigenvalues

Solution: Let Au1 = λ1u1 and Au2 = λ2u2 with λ1 6= λ2.
We prove that if α1u1 + α2u2 = 0 then we must have α1 =
α2 = 0. Multiply α1u1 + α2u2 = 0 by A− λ1I: then

(A− λ1I) [α1u1 + α2u2] = 0→
α1(A− λ1I)u1 + α2(A− λ1I)u2 = 0→

0 + α2(λ2 − λ1I)u2 = 0
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Since λ2 6= λ1 we must have α2 = 0. Similar argument will show
that α1 = 0.

ä Consequence: if all eigenvalues of a matrix A are simple then A
is diagonalizable.

ä Theorem 3: A symmetric matrix has real eigenvalues and
is diagonalizable. In addition A admits a set of orthonormal
eigenvectors.

16-10 Text: 5.1-5.3 – EIG

16-10

Transformations that Preserve Eigenstructure

Shift B = A− σI: Av = λv ⇐⇒ Bv = (λ− σ)v
eigenvalues move, eigenvectors remain the same.

Poly-
nomial

B = p(A) = α0I + · · · + αnA
n: Av = λv ⇐⇒

Bv = p(λ)v
eigenvalues transformed, eigenvectors remain the same.

Invert B = A−1: Av = λv ⇐⇒ Bv = λ−1v
eigenvalues inverted, eigenvectors remain the same.

- Let A be diagonalizable. How would you compute p(A) if p is
a high degree polynomial? [Hint: start with Ak]
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The Singular Value Decomposition (SVD)

Theorem For any matrix A ∈ Rm×n there exist orthogonal

matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T

where Σ is a diagonal matrix with entries σii ≥ 0.

σ11 ≥ σ22 ≥ · · ·σpp ≥ 0 with p = min(n,m)

ä The σii are the singular values of A.

ä σii is denoted simply by σi
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Case 1:

=

V

UA

T

Σ

Case 2:

A U Σ
V

=

T
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The “thin” SVD

ä Consider the Case-1. It can be rewritten as

A = [U1U2]

(
Σ1

0

)
V T

Which gives:

A = U1Σ1 V
T

where U1 is m×n (same shape as A), and Σ1 and V are n×n
ä referred to as the “thin” SVD. Important in practice.

- How can you obtain the thin SVD from the QR factorization of
A and the SVD of an n× n matrix?

16-14 Text: 7.4 – SVD

16-14

A few properties. Assume that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then:

• rank(A) = r = number of nonzero singular values.

• Ran(A) = span{u1, u2, . . . , ur}
• Null(A) = span{vr+1, vr+2, . . . , vn}
• The matrix A admits the SVD expansion:

A =

r∑

i=1

σiuiv
T
i
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Rank and approximate rank of a matrix

ä The number of nonzero singular values r equals the rank of A

ä In practice: zero singular values replaced by small values due to
noise.

ä Can define approximate rank: rank obtained by ‘neglecting small-
est singular values’

Example: Let A a matrix with singular values

σ1 = 10.0; σ2 = 6.0; σ3 = 3.0;
σ4 = 0.030; σ5 = 0.0130; σ6 = 0.0010;

ä σ4, σ5, σ6, are likely due to noise - so approximate rank is 3.

ä Rigorous way of stating this exists – but beyond scope of this
class [see csci 5304]
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Right and Left Singular vectors:

Avi = σiui
ATuj = σjvj

ä Consequence ATAvi = σ2
ivi and AATui = σ2

iui

ä Right singular vectors (vi’s) are eigenvectors of ATA

ä Left singular vectors (ui’s) are eigenvectors of AAT

ä Possible to get the SVD from eigenvectors of AAT and ATA
– but: difficulties due to non-uniqueness of the SVD
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A few applications of the SVD

Many methods require to approximate the original data (matrix) by
a low rank matrix before attempting to solve the original problem

ä Regularization methods require the solution of a least-squares
linear system Ax = b approximately in the ‘dominant singular’
space of A

ä The Latent Semantic Indexing (LSI) method in information
retrieval, performs the “query” in the dominant singular space of
A

ä Methods utilizing Principal Component Analysis, e.g. Face
Recognition.
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Information Retrieval: Vector Space Model

ä Given: a collection of documents (columns of a matrix A) and
a query vector q.

ä Collection represented by an m× n term by document matrix
with aij = LijGiNj

ä Queries (‘pseudo-documents’) q are represented similarly to a
column
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Vector Space Model - continued

ä Problem: find a column of A that best matches q

ä Similarity metric: angle between column c and query q

cos θ(c, q) =
|cTq|
‖c‖‖q‖

ä To rank all documents we need to compute

s = ATq

ä s = similarity vector.

ä Literal matching – not very effective.

ä Problems with literal matching: polysemy, synonymy,...
16-20 Text: 7.4 – SVDapp

16-20



Use of the SVD

ä Solution: Extract intrinsic information – or underlying “semantic”
information –

ä LSI: replace matrix A by a low rank approximation using the
Singular Value Decomposition (SVD)

A = UΣV T → Ak = UkΣkV
T
k

ä Uk : term space, Vk: document space.

ä Refer to this as Truncated SVD (TSVD) approach

ä Amounts to replacing small sing. values of A by zeros

New similarity vector:

sk = AT
kq = VkΣkU

T
k q
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LSI : an example

%% D1 : INFANT & TODDLER first aid
%% D2 : BABIES & CHILDREN’s room for your HOME
%% D3 : CHILD SAFETY at HOME
%% D4 : Your BABY’s HEALTH and SAFETY
%% : From INFANT to TODDLER
%% D5 : BABY PROOFING basics
%% D6 : Your GUIDE to easy rust PROOFING
%% D7 : Beanie BABIES collector’s GUIDE
%% D8 : SAFETY GUIDE for CHILD PROOFING your HOME
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% TERMS: 1:BABY 2:CHILD 3:GUIDE 4:HEALTH 5:HOME
%% 6:INFANT 7:PROOFING 8:SAFETY 9:TODDLER
%% Source: Berry and Browne, SIAM., ’99

ä Number of documents: 8

ä Number of terms: 9
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ä Raw matrix (before scaling).

A =

d1 d2 d3 d4 d5 d6 d7 d8
1 1 1 1 bab
1 1 1 chi

1 1 1 gui
1 hea

1 1 1 hom
1 1 inf

1 1 1 pro
1 1 1 saf

1 1 tod

- Get the anwser to the query Child Safety, so

q = [0 1 0 0 0 0 0 1 0]

using cosines and then using LSI with k = 3.
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