EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4]

Eigenvalue Problems. Their origins

- Structural Engineering $[Ku = \lambda Mu]$
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Quantum chemistry and Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.

16-3

Basic definitions and properties

Eigenvalue Problems. Introduction

 $Au = \lambda u$

 \succ $\lambda_1 = 1$ with eigenvector $u_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

 \succ $\lambda_2 = 2$ with eigenvector $u_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Example:

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

 $A = \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}$

 \blacktriangleright The set of eigenvalues of A is called the spectrum of A

 $\lambda \in \mathbb{C}$: eigenvalue

 $u \in \mathbb{C}^n$: eigenvector

Text: 5.1-5.3 – EIG

A scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ .

16-2

The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

> λ is an eigenvalue iff the columns of $A - \lambda I$ are linearly dependent.

 $\succ \lambda$ is an eigenvalue iff $\det(A - \lambda I) = 0$

Compute the eigenvalues of	$(2 \ 1 \ 0)$
the matrix:	$A = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$
Eigenvectors?	
16-4	Text: 5.1-5.3 – EIG

Text: 5.1-5.3 – EIG

Basic definitions and properties (cont.)

An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

So there are n eigenvalues (counted with their multiplicities).

> The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.

Find all the eigenvalues of the matrix:

$$A = \left[egin{array}{cccc} 1 & 2 & -4 \ 0 & 1 & 2 \ 0 & 0 & 2 \end{array}
ight]$$

Find the associated eigenvectors.

 \checkmark How many eigenvectors can you find if a_{33} is replaced by one?

- Same questions if a_{12} is replaced by zero.
- What are all the eigenvalues of a diagonal matrix?

 16-5
 Text: 5.1-5.3
 EIG

 16-6
 Text: 5.1-5.3
 EIG

> Two matrices A and B are similar if there exists an invertible matrix V such that

 $A=VBV^{-1}$

> A and B represent the same linear mapping in 2 different bases.

Explain why [Hint: Assume a column of V represents one basis vector of the new basis expressed in the old basis...]

Solution: Let A be linear mapping represented in standard basis e_1, \dots, e_n (the 'old' basis). Consider a 'new' basis v_1, v_2, \dots, v_n . Assume each v_i is expressed in the old basis and let $V = [v_1, v_2, \dots, v_n]$. A vector s in the new basis is expressed as Vs in the old basis (explain). Linear mapping applied to this vector is t = A(Vs). This is expressed in old basis. Then $t = V(V^{-1}AVs)$ expresses the result in new basis: $B = V^{-1}AVs$ represents mapping A in basis V. Show: A and B have the same eigenvalues. What about eigenvectors?

Definition: A is diagonalizable if it is similar to a diagonal matrix

> Note : not all matrices are diagonalizable

> Theorem 1: A matrix is diagonalizable iff it has n linearly independent eigenvectors

Example: Which of these matrices is/are diagonalizable

	$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$		$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$		110
A =	$0\ 2\ 1$	B =	011	C =	011
	003		001		002

Theorem 2: The eigenvectors associated with distinct eigenvalues are linearly independent

Prove the result for 2 distinct eigenvalues

Solution: Let $Au_1 = \lambda_1 u_1$ and $Au_2 = \lambda_2 u_2$ with $\lambda_1 \neq \lambda_2$. We prove that if $\alpha_1 u_1 + \alpha_2 u_2 = 0$ then we must have $\alpha_1 = \alpha_2 = 0$. Multiply $\alpha_1 u_1 + \alpha_2 u_2 = 0$ by $A - \lambda_1 I$: then

 $egin{aligned} &(A-\lambda_1I)\left[lpha_1u_1+lpha_2u_2
ight]=0
ightarrow\ lpha_1(A-\lambda_1I)u_1+lpha_2(A-\lambda_1I)u_2=0
ightarrow\ 0+lpha_2(\lambda_2-\lambda_1I)u_2=0 \end{aligned}$

16-9

Transformations that Preserve Eigenstructure

- Shift $B = A \sigma I$: $Av = \lambda v \iff Bv = (\lambda \sigma)v$ eigenvalues move, eigenvectors remain the same.
- Polynomial $B = p(A) = \alpha_0 I + \dots + \alpha_n A^n$: $Av = \lambda v \iff Bv = p(\lambda)v$ eigenvalues transformed, eigenvectors remain the same.
- Invert $B = A^{-1}$: $Av = \lambda v \iff Bv = \lambda^{-1}v$ eigenvalues inverted, eigenvectors remain the same.

Let A be diagonalizable. How would you compute p(A) if p is a high degree polynomial? [Hint: start with A^k]

16-11

Since $\lambda_2 \neq \lambda_1$ we must have $\alpha_2 = 0$. Similar argument will show that $\alpha_1 = 0$.

Consequence: if all eigenvalues of a matrix A are simple then A is diagonalizable.

> Theorem 3: A symmetric matrix has real eigenvalues and is diagonalizable. In addition A admits a set of orthonormal eigenvectors.

16-10

Text: 5.1-5.3 – EIG

The Singular Value Decomposition (SVD)

Theorem For any matrix $A \in \mathbb{R}^{m \times n}$ there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

16-10

 $A = U\Sigma V^T$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

 $\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$ with $p = \min(n,m)$

- > The σ_{ii} are the singular values of A.
- $\succ \sigma_{ii}$ is denoted simply by σ_i

16-15

Right and Left Singular vectors:

$$egin{array}{lll} Av_i &= \sigma_i u_i \ A^T u_j &= \sigma_j v_j \end{array}$$

- ► Consequence $A^T A v_i = \sigma_i^2 v_i$ and $A A^T u_i = \sigma_i^2 u_i$
- \blacktriangleright Right singular vectors $(v_i \, {}^{'} {
 m s})$ are eigenvectors of $A^T A$
- \blacktriangleright Left singular vectors (u_i) are eigenvectors of AA^T
- \blacktriangleright Possible to get the SVD from eigenvectors of AA^T and A^TA
- but: difficulties due to non-uniqueness of the SVD

A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

> Regularization methods require the solution of a least-squares linear system Ax = b approximately in the 'dominant singular' space of A

The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A

► Methods utilizing Principal Component Analysis, e.g. Face Recognition.

16-17	Text: 7.4 – SVD	16-18		Text: 7.4 – SVDapp
	16-17		10	6-18

Information Retrieval: Vector Space Model

Siven: a collection of documents (columns of a matrix A) and a query vector q.

- Collection represented by an $m \times n$ term by document matrix with $a_{ij} = L_{ij}G_iN_j$
- Queries ('pseudo-documents') q are represented similarly to a column

16-19

Text: 7.4 – SVDapp

Vector Space Model - continued

- \blacktriangleright Problem: find a column of A that best matches q
- \succ Similarity metric: angle between column c and query q

$$\cos heta(c,q) = rac{|c^T q|}{\|c\|\|q\|}$$

To rank all documents we need to compute

$$s = A^T q$$

16-20

 $\blacktriangleright s = similarity vector.$

16-20

- Literal matching not very effective.
- Problems with literal matching: polysemy, synonymy,...

Text: 7.4 – SVDapp

Use of the SVD

Solution: Extract intrinsic information – or underlying "semantic" information –

> LSI: replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

$$A = U\Sigma V^T \quad
ightarrow \quad A_k = U_k \Sigma_k V_k^T$$

- \succ U_k : term space, V_k : document space.
- ▶ Refer to this as Truncated SVD (TSVD) approach
- > Amounts to replacing small sing. values of A by zeros

New similarity vector:

16-21

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

16-21

Text: 7.4 – SVDapp

Text: 7.4 – SVDapp

LSI : an example

0/0/ 5

66	D1 :	INFANI & IUDDLER first aid
///	D2 :	BABIES & CHILDREN's room for your HOME
///	D3 :	CHILD SAFETY at HOME
///	D4 :	Your BABY's HEALTH and SAFETY
%%	:	From INFANT to TODDLER
%% :	D5 :	BABY PROOFING basics
////	D6 :	Your GUIDE to easy rust PROOFING
/ 0 / 0 / 0 / 0	D7 : D8 : %%%%%%% TERMS: Source	Beanie BABIES collector's GUIDE SAFETY GUIDE for CHILD PROOFING your HOME %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1:BABY 2:CHILD 3:GUIDE 4:HEALTH 5:HOME 6:INFANT 7:PROOFING 8:SAFETY 9:TODDLER e: Berry and Browne, SIAM., '99
	Numbe	r of documents: 8
	Numbe	er of terms: 9
16-22		Text: 7.4 – SVDapp
		16-22

> Raw matrix (before scaling).

 $d1 \, d2 \, d3 \, d4 \, d5 \, d6 \, d7 \, d8$ 1 1 1 1 bab 1 1 1 chi 1 1 1 | gui hea 1 A =1 1 1 hom1 inf 1 1 1 1 *pro* 1 1 1 | saf1 1 tod

🖾 Get the anwser to the query Child Safety, so

$$q = [0\ 1\ 0\ 0\ 0\ 0\ 1\ 0]$$

using cosines and then using LSI with k = 3.