LINEAR EQATIONS [1.1] + (CONTINUED)

Gaussian Elimination

3-2

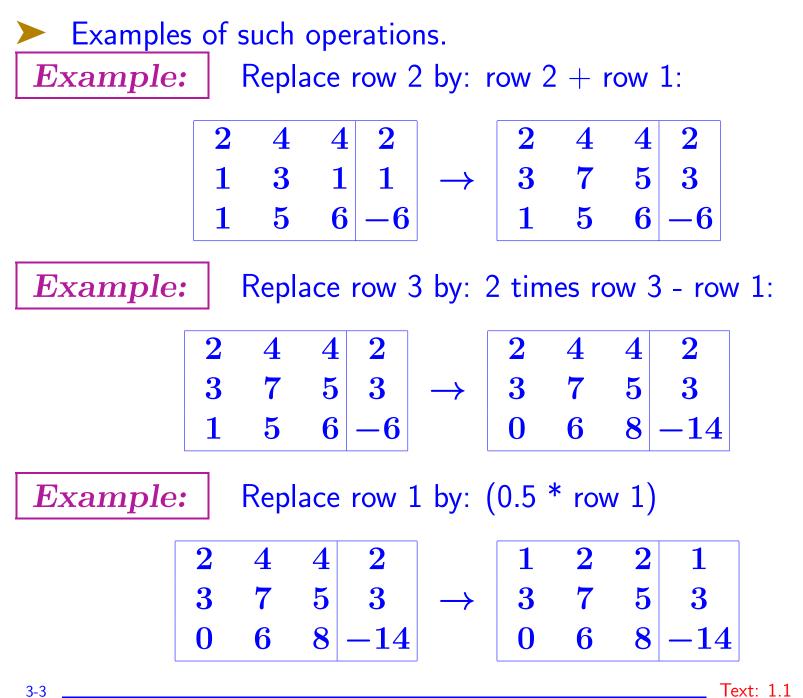
Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Recall Notation: Augmented form of a system

$$egin{bmatrix} 2x_1+4x_2+4x_3&=&2\ x_1+3x_2+1x_3&=&1\ x_1+5x_2+6x_3&=-6\ &&1\ 5&6\ -6\ \end{bmatrix}$$

Main operation used: scaling and adding rows.



Gaussian Elimination (cont.)

> Go back to original system. Step 1 must eliminate x_1 from equations 2 and 3, i.e.,

It must transform:

3-4

 $row_2 := row_2 - \frac{1}{2} \times row_1$: $row_3 := row_3 - \frac{1}{2} \times row_1$:

2	4	4	2	2	4	4	2	
0	1	-1	0	0	1	$4 \\ -1 \\ 4$	0	
1	5	6	-6	0	3	4	-7	

now

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix} \text{ into: } \begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

$$row_3 := row_3 - 3 \times row_2 : \rightarrow \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{bmatrix}$$

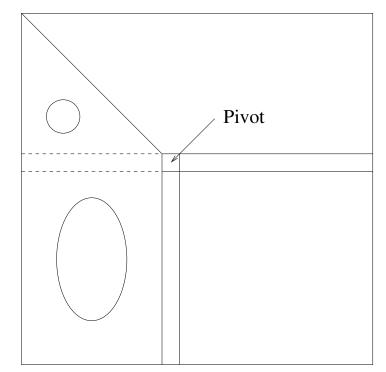
$$\text{System is triangular} \begin{bmatrix} 2x_1 + 4x_2 + 4x_3 = 2 \\ x_2 - x_3 = 0 \\ 7x_3 = -7 \end{bmatrix} \rightarrow \text{Solve}$$

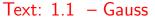
Find the solution of the above triangular system and verify that it is a solution of the original system

Gaussian Elimination: The algorithm

Recall: an algorithm is a sequence of operations (a 'recipe') to be performed by a computer.

General step of Gaussian elimination :
At step k subtract multiples of row k from rows k + 1, k + Row k
2, ..., n in order to zero-out entries below a_{kk} in column k.
Repeat this step for k = 1, 2, ..., n - 1





Step k in words:

3-7

for each row i where i runs from i = k + 1 to i = n do: subtract piv * row k from row i (where $piv = a_{ik}/a_{kk}$).

ALGORITHM : 1. Gaussian Elimination

1. For
$$k = 1 : n - 1$$
 Do:
2. For $i = k + 1 : n$ Do:
3. $piv := a_{ik}/a_{kk}$
4. For $j := k + 1 : n + 1$ Do :
5. $a_{ij} := a_{ij} - piv * a_{kj}$
6. End
6. End
7. End

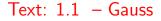
Matlab Script:

3-8

```
function [x] = gauss (A, b)
% function [x] = gauss (A, b)
% solves A x = b by Gaussian elimination
n = size(A,1);
A = [A,b];
for k=1:n-1
    for i=k+1:n
        piv = A(i,k) / A(k,k);
        A(i,k+1:n+1)=A(i,k+1:n+1)-piv*A(k,k+1:n+1);
        end
end
x = backsolv(A,A(:,n+1));
```

Input: matrix A and right-hand side b. Output: solution x.

Invokes backsolv.m to solve final triangular system.



Gaussian Elimination: Pivoting

Consider again Gaussian Elimination for the linear system

$$row_2 := row_2 - \frac{1}{2} imes row_1$$
:

$$row_3:=row_3-rac{1}{2}{ imes}row_1$$
:

2	2	4	2
0	0	-1	0
1	4	6	-5

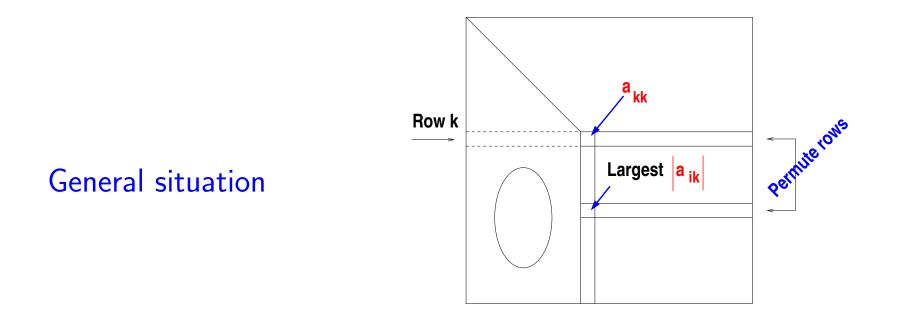
2	2	4	2
0	0	-1	0
0	3	4	-6

 $\blacktriangleright Pivot \ a_{22} \text{ is zero. Solution :} \\ permute rows 2 and 3 \qquad \longrightarrow \\ \hline$

3-9

2	2	4	2
0	3	4	-6
0	0	-1	0

Gaussian Elimination: Partial Pivoting



• Partial Pivoting: *Always* Permute row k with row l such that

$$\left|a_{lk}
ight|=\max_{i=k,...,n}\left|a_{ik}
ight|$$

3-10

Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than a triangular system, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system (P. 2-2). Step 1 must transform:

2	4	4	2		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
1	3	1	1	into:	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
1	5	6	-6		0	$oldsymbol{x}$	\boldsymbol{x}	\boldsymbol{x}

Same step as 1st step of Gaussian Elimination.

3-11

 $row_2 := row_2 - 0.5 imes row_1$: $row_3 := row_3 - 0.5 imes row_1$:

	2	4	4	2	2	4	4	2
Step 1:	0	1	-1	0	0	1	-1	0
	1	5	6 -	-6	0	3	4	-7

Must now transform:

2	4	4	2		\boldsymbol{x}	0	\boldsymbol{x}	\boldsymbol{x}
0	1	-1	0	into:	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
0	3	4	-7		0	0	\boldsymbol{x}	\boldsymbol{x}

 $row_1 := row_1 - 4 \times row_2$: $row_3 := row_3 - 3 \times row_2$:

		U	0	4		U	0	
Step 2:	0	1	-1	0	0	1	-1	0
	0	3	4 -	-7	0	0	7	-7

Text: 1.1-.2 – GaussJordan

There is now a third step:

3-13

$$2$$
 0 8 2 x 0 0 x To transform: 0 1 -1 0 into: 0 x 0 x 0 0 7 -7 0 0 x x

Final
System:

$$2x_1$$
 $= 10$
 x_2
 $x_1 = 5$
Solution:

 x_2
 $= -1$
 $7x_3 = -7$
 Solution:
 $x_2 = -1$
 $x_3 = -1$

Text: 1.1-.2 – GaussJordan

Gauss-Jordan - variants

3 - 14

Common variant: Before an elimination step is started divide the row by diagonal entry a_{kk}

- > At the end all diagonal entries are ones \rightarrow solution = rhs
- Redo the previous example with this variant.
- Is this more or less costly than the original method?

NOTE: unless otherwise specified Gauss-Jordan will refer to this scaled version.

Also: Pivoting can be implemented just like Gaussian elimination.

Important: Never swap a pivot row with a row above it! (destroys structure)

```
function x = gaussj (A, b)
%-
% function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
% this version scales rows.
%--
n = size(A, 1);
A = [A,b];
 for k=1:n
    A(k,k:n+1) = A(k,k:n+1)/A(k,k);
    for i=1:n
        if (i = k)
            piv = A(i,k);
            \bar{A}(i,k:n+1) = A(i,k:n+1) - piv * A(k,k:n+1);
        end
    end
 end
 x = A(:, n+1);
```

3-15

Linear systems – summary of complexity results

> The number of operations needed to solve a triangular linear system with n unknowns is

$$C_T(n) = n^2$$

The number of operations required to solve a linear system with *n* unknowns by Gaussian elimination is

$$C_G(n)pprox rac{2}{3}n^3$$

The number of operations required to solve a linear system with *n* unknowns by Gauss-Jordan elimination is

 $C_{GJ}(n) pprox n^3$

3-16

Note: remember that Gauss-Jordan costs 50% more than Gauss.