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Gaussian Elimination

» Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve,
we will transform a linear system into one that is triangular. Main

operation: combine rows so that zeros appear in the required
locations to make the system triangular.

Recall Notation: Augmented form of a system

21 + 4o + 43 = 2 2 4 4 2
1 + 32 + 1&g = 1 Notation:| 1 3 1 1
I —+ 52132 —+ 62133 = —06 1 54 6 —06

» Main operation used: scaling and adding rows.

3-2 Text: 1.1 — Gauss
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»  Examples of such operations.

Example: | Replace row 2 by: row 2 + row 1:

2 4 4 2 2 4 4 2

1 3 111 — |3 7 5 3

1 5 6 —6 1 5 6 —6
Example: | Replace row 3 by: 2 times row 3 - row 1:

2 4 4 2 2 4 4 2

3 7 53| — 3 7 5 3

1 5 6 —6 0O 6 8 —14

Example: | Replace row 1 by: (0.5 * row 1)

2 4 4 2 1 2 2 1
3 7 5 3 — |3 7 5 3
O 6 8 —14 O 6 8 —14
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equations 2 and 3, i.e.,

It must transform:

= =N
31 QJURIIN
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1
—6
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ToOws := TOW9y — % X rows:

rows .

2 4

2
0
—6

Gaussian Elimination (cont.)

»  Go back to original system. Step 1 must eliminate &, from

= rows —% X rown:

2
0
—7
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»  Step 2 must now transform:

2 4 4 2 * %k *
O 1 —1]0 jinto: O % = %
0 3 4 =7 0 0 =% =
2 4 4 2
rows :=rows —3 Xrowy:— |0 1 -1 0
0O O 7 =7
e System s 2¢1 + 4xy + 43 = 2 .
now triangular xo — x3 = 0 — Dolve
7:133 = —7

#]| Find the solution of the above triangular system and verify that
it is a solution of the original system

3-5 Text: 1.1 — Gauss

3-5



Gaussian Elimination: The algorithm

Recall: an algorithm is a sequence of operations (a 'recipe’) to be

performed by a computer.

»  General step of Gaussian elim-
Ination :

» At step k subtract multiples

of row k from rows k + 1,k + Rowk
2,+++ ,m in order to zero-out en-

tries below agg in column k.

»  Repeat this step for k =
1,2,....n— 1
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Step k in words:

for each row 2 where 2 runs from 1 = k + 1 to = = m do:
subtract ptv * row k from row ¢ (where ptv = a;x/ark).

ALGORITHM : 1. Gaussian Elimination

Fork =1 :n — 1 Do:
Fortr =k + 1 : n Do:
PIv = Qik/ Qg
Forg :=k+1:n+1 Do :
Q;; = Qg5 — p’l:’U * aj;
End
End
End

NSO N LN
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Matlab Script: |

function [x]

7% function [x]

7%, solves A x =
n = size(A,1) ;
A = [A,b];
for k=1:n-1

for i=k+1:n
piv = A(i,k) / A(k,k) ;
A(i,k+1:n+1)=A(i,k+1:n+1)-piv*A(k,k+1:n+1);
end
end
x = backsolv(A,A(:,n+1));

gauss (A, b)
gauss (A, b)
by Gaussian elimination

o I

» |nput: matrix A and right-hand side b. Output: solution .

» Invokes backsolv.m to solve final triangular system.
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Gaussian Elimination: Pivoting

Consider again Gaussian Elimination for the linear system

2281 —+ 2582 —+ 4283

r1 + T2 + T3
xr1 + 4xy + 623

Towsy 1= rowg—% X rows:
2 2 4 | 2
O 0 —1 0
1 4 6 —5

»  Pivot ass is zero. Solution :
permute rows 2 and 3 —>

3-9
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—9

2 2 4 2
Or:'1 1 1|1
1 4 6|—5
rows 1= rowg—%Xrowlz
2 2 4 | 2
O 0 -1 0
0O 3 4 —6
2 2 4 | 2
0O 3 4 -6
O 0 —-10

Text: 1.1 — Gauss
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Gaussian Elimination: Partial Pivoting

kk
Row k

. . Largest |a.
General situation arges ‘a'k‘ 3

»  Partial Pivoting: *Always™ Permute row k with row [ such that

|alk| = MaX;—g.....n |aik|

»  More ‘stable’ algorithm.

3-10 Text: 1.1 — Gauss
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Gauss-Jordan FElimination

Principle of the method: We will now transform the system into
one that is even easier to solve than a triangular system, namely a
diagonal system. The method is very similar to Gaussian Elimination.
It is just a bit more expensive.

Back to original system (P. 2-2). Step 1 must transform:

2 4 4 2 r T x|\ T
1 3 1 1 into: 0 & xx
1 5 6 —6 0 = xx

»  Same step as 1st step of Gaussian Elimination.

3-11 Text: 1.1-.2 — GaussJordan
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rows :— row,—0.9 Xrowy: rows:= rows—0.5Xrows:

2 4 4 2 2 4 4| 2
Step 1: O 1 -1 0 O 1 -1 0
1 5 6 —6 0O 3 4| —T7
2 4 4 2 x 0 xx
Must now transform: O 1 —1 0 into:|] 0 = =x=x
0O 3 4| —T7 0O 0 xx
row; := row; — 4 X rows: Tows := rowsz— 3 X rows:
2 0 8 2 2 0 8 2
Step 2: O 1 -1 0 O 1 -1 0
0O 3 4 —T7 O O 7 =7
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There is now a third step:

2 0 8 2 r 0 Ox
Totransform: 0 1 —1 0 into:' 0 = 0 x
0O O 7T =7 0O 0 =z x
rowi := row; — g X rows: TOWs3 := TroWwsg — _71 X rows:
2 0 0 10 2 0 010
Step 3: 0O 1 —-1 0 0O 1 0-1
0O O T =7 0O 0 7 -7
Final 2z, = 10 Soluti T1 =9
System: To — _1 olution: | a4 = —1
Txy = —T7 T3 = —1
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Gauss-Jordan - variants

Common variant: Before an elimination step is started divide the
row by diagonal entry agz

» At the end all diagonal entries are ones — solution = rhs

#] Redo the previous example with this variant.

#| Is this more or less costly than the original method?

NOTE: unless otherwise specified Gauss-Jordan will
refer to this scaled version.

» Also: Pivoting can be implemented just like Gaussian elimination.

Important:  Never swap a pivot row with a row above it! (destroys
structure)
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function x = gaussj (A, b)

R —
%» function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
% this version scales rows.
n = size(A,1) ;
A = [A,b] ;
for k=1:n
A(k,k:n+1) = A(k,k:n+1)/A(k,k);
for 1=1:n
if (1 7= k)
piv = A(i,k) ;
A(i,k:n+1)=A(i,k:n+1)-pivxA(k,k:n+1);
end
end
end
x = A(:,n+1);
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Linear systems — summary of complexity results

» The number of operations needed to solve a triangular linear
system with n unknowns is

Cr(n) = n?

»  The number of operations required to solve a linear system with
1. unknowns by Gaussian elimination is

Ca(n) = in®

»  The number of operations required to solve a linear system with
n unknowns by Gauss-Jordan elimination is

Cgs(n) = n’
» Note: remember that Gauss-Jordan costs 50% more than Gauss.
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