
LINEAR EQATIONS [1.1] + (CONTINUED)

3-1

Gaussian Elimination

ä Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve,
we will transform a linear system into one that is triangular. Main
operation: combine rows so that zeros appear in the required
locations to make the system triangular.

Recall Notation: Augmented form of a system

 2x1 + 4x2 + 4x3 = 2
x1 + 3x2 + 1x3 = 1
x1 + 5x2 + 6x3 = −6

Notation:
2 4 4 2
1 3 1 1
1 5 6 −6

ä Main operation used: scaling and adding rows.
3-2 Text: 1.1 – Gauss

3-2

ä Examples of such operations.

Example: Replace row 2 by: row 2 + row 1:

2 4 4 2
1 3 1 1
1 5 6 −6

→
2 4 4 2
3 7 5 3
1 5 6 −6

Example: Replace row 3 by: 2 times row 3 - row 1:

2 4 4 2
3 7 5 3
1 5 6 −6

→
2 4 4 2
3 7 5 3
0 6 8 −14

Example: Replace row 1 by: (0.5 * row 1)

2 4 4 2
3 7 5 3
0 6 8 −14

→
1 2 2 1
3 7 5 3
0 6 8 −14

3-3 Text: 1.1 – Gauss

3-3

Gaussian Elimination (cont.)

ä Go back to original system. Step 1 must eliminate x1 from
equations 2 and 3, i.e.,

ä It must transform:

2 4 4 2
1 3 1 1
1 5 6 −6

into:
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

row2 := row2− 1
2
× row1: row3 := row3− 1

2
× row1:

2 4 4 2
0 1 −1 0
1 5 6 −6

2 4 4 2
0 1 −1 0
0 3 4 −7

3-4 Text: 1.1 – Gauss

3-4

ä Step 2 must now transform:

2 4 4 2
0 1 −1 0
0 3 4 −7

into:
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

row3 := row3 − 3× row2 :→
2 4 4 2
0 1 −1 0
0 0 7 −7

• System is
now triangular

 2x1 + 4x2 + 4x3 = 2
x2 − x3 = 0

7x3 = −7
→ Solve

- Find the solution of the above triangular system and verify that
it is a solution of the original system

3-5 Text: 1.1 – Gauss

3-5

Gaussian Elimination: The algorithm

Recall: an algorithm is a sequence of operations (a ’recipe’) to be
performed by a computer.

ä General step of Gaussian elim-
ination :
ä At step k subtract multiples
of row k from rows k + 1, k +
2, · · · , n in order to zero-out en-
tries below akk in column k.
ä Repeat this step for k =
1, 2, ..., n− 1

Pivot

Row k

3-6 Text: 1.1 – Gauss

3-6

Step k in words:

for each row i where i runs from i = k + 1 to i = n do:
subtract piv * row k from row i (where piv = aik/akk).

ALGORITHM : 1 Gaussian Elimination

1. For k = 1 : n− 1 Do:
2. For i = k + 1 : n Do:
3. piv := aik/akk

4. For j := k + 1 : n + 1 Do :
5. aij := aij − piv ∗ akj

6. End
6. End
7. End

3-7 Text: 1.1 – Gauss

3-7

Matlab Script:

function [x] = gauss (A, b)
% function [x] = gauss (A, b)
% solves A x = b by Gaussian elimination
n = size(A,1) ;
A = [A,b];
for k=1:n-1

for i=k+1:n
piv = A(i,k) / A(k,k) ;
A(i,k+1:n+1)=A(i,k+1:n+1)-piv*A(k,k+1:n+1);

end
end
x = backsolv(A,A(:,n+1));

ä Input: matrix A and right-hand side b. Output: solution x.

ä Invokes backsolv.m to solve final triangular system.

3-8 Text: 1.1 – Gauss

3-8

Gaussian Elimination: Pivoting

Consider again Gaussian Elimination for the linear system 2x1 + 2x2 + 4x3 = 2
x1 + x2 + x3 = 1
x1 + 4x2 + 6x3 = −5

Or:
2 2 4 2
1 1 1 1
1 4 6 −5

row2 := row2−1
2
×row1: row3 := row3−1

2
×row1:

2 2 4 2
0 0 −1 0
1 4 6 −5

2 2 4 2
0 0 −1 0
0 3 4 −6

ä Pivot a22 is zero. Solution :
permute rows 2 and 3 −→

2 2 4 2
0 3 4 −6
0 0 −1 0

3-9 Text: 1.1 – Gauss

3-9

Gaussian Elimination: Partial Pivoting

General situation

Largest a ik
Per

m
ute

 ro
ws

a
kk

Row k

ä Partial Pivoting: *Always* Permute row k with row l such that

|alk| = maxi=k,...,n |aik|

ä More ‘stable’ algorithm.
3-10 Text: 1.1 – Gauss

3-10

Gauss-Jordan Elimination

Principle of the method: We will now transform the system into
one that is even easier to solve than a triangular system, namely a
diagonal system. The method is very similar to Gaussian Elimination.
It is just a bit more expensive.

Back to original system (P. 2-2). Step 1 must transform:

2 4 4 2
1 3 1 1
1 5 6 −6

into:
x x x x
0 x x x
0 x x x

ä Same step as 1st step of Gaussian Elimination.

3-11 Text: 1.1-.2 – GaussJordan

3-11

row2 := row2−0.5×row1: row3 := row3−0.5×row1:

Step 1:
2 4 4 2
0 1 −1 0
1 5 6 −6

2 4 4 2
0 1 −1 0
0 3 4 −7

Must now transform:
2 4 4 2
0 1 −1 0
0 3 4 −7

into:
x 0 x x
0 x x x
0 0 x x

row1 := row1−4× row2: row3 := row3−3× row2:

Step 2:
2 0 8 2
0 1 −1 0
0 3 4 −7

2 0 8 2
0 1 −1 0
0 0 7 −7

3-12 Text: 1.1-.2 – GaussJordan

3-12

There is now a third step:

To transform:
2 0 8 2
0 1 −1 0
0 0 7 −7

into:
x 0 0 x
0 x 0 x
0 0 x x

row1 := row1− 8
7
× row3: row2 := row2− −17 × row3:

Step 3:
2 0 0 10
0 1 −1 0
0 0 7 −7

2 0 0 10
0 1 0 −1
0 0 7 −7

Final
System:

 2x1 = 10
x2 = −1

7x3 = −7
Solution:

x1 = 5
x2 = −1
x3 = −1

3-13 Text: 1.1-.2 – GaussJordan

3-13

Gauss-Jordan - variants

Common variant: Before an elimination step is started divide the
row by diagonal entry akk

ä At the end all diagonal entries are ones→ solution = rhs

- Redo the previous example with this variant.

- Is this more or less costly than the original method?

NOTE: unless otherwise specified Gauss-Jordan will
refer to this scaled version.

ä Also: Pivoting can be implemented just like Gaussian elimination.

Important: Never swap a pivot row with a row above it! (destroys
structure)

3-14 Text: 1.1-.2 – GaussJordan

3-14

function x = gaussj (A, b)
%--
% function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
% this version scales rows.
%--
n = size(A,1) ;
A = [A,b] ;
for k=1:n

A(k,k:n+1) = A(k,k:n+1)/A(k,k);
for i=1:n

if (i ~= k)
piv = A(i,k) ;
A(i,k:n+1)=A(i,k:n+1)-piv*A(k,k:n+1);

end
end

end
x = A(:,n+1);

3-15 Text: 1.1-.2 – GaussJordan

3-15

Linear systems – summary of complexity results

ä The number of operations needed to solve a triangular linear
system with n unknowns is

CT(n) = n2

ä The number of operations required to solve a linear system with
n unknowns by Gaussian elimination is

CG(n) ≈ 2
3
n3

ä The number of operations required to solve a linear system with
n unknowns by Gauss-Jordan elimination is

CGJ(n) ≈ n3

ä Note: remember that Gauss-Jordan costs 50% more than Gauss.

3-16 Text: 1.1-.2 – GaussJordan

3-16

