LINEAR EQATIONS $\quad[1.1]+$ (CONTINUED)

Gaussian Elimination

> Back to arbitrary linear systems.
Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Recall Notation: Augmented form of a system

$$
\left\{\begin{array}{c}
2 x_{1}+4 x_{2}+4 x_{3}=2 \\
x_{1}+3 x_{2}+1 x_{3}=1 \\
x_{1}+5 x_{2}+6 x_{3}=-6
\end{array} \text { Notation: } \begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6 \\
\hline
\end{array}\right.
$$

$>$
Main operation used: scaling and adding rows.
\qquad
3-2

Gaussian Elimination (cont.)

$>$ Go back to original system. Step 1 must eliminate x_{1} from equations 2 and 3 , i.e.,
$>$ It must transform:

2	4	4	2
1	3	1	1
1	5	6	-6

row $_{2}:=$ row $_{2}-\frac{1}{2} \times$ row $_{1}: \quad$ row $_{3}:=$ row $_{3}-\frac{1}{2} \times$ row $_{1}$:

$$
\begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\hline
\end{array} \quad \quad \begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\hline
\end{array}
$$

$$
\begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
3 & 7 & 5 & 3 \\
0 & 6 & 8 & -14
\end{array} \rightarrow \begin{array}{|ccc|c|}
\hline 1 & 2 & 2 & 1 \\
3 & 7 & 5 & 3 \\
0 & 6 & 8 & -14 \\
\hline
\end{array}
$$

Step 2 must now transform:

$$
\begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{array} \text { into: } \begin{array}{|lll|l|}
\hline * & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
\hline
\end{array}
$$

$$
\text { row }_{3}:=\text { row }_{3}-3 \times \text { row }_{2}: \rightarrow \begin{array}{|rrr|c|}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\hline
\end{array}
$$

- System is now triangular

$$
\left\{\begin{aligned}
2 x_{1}+4 x_{2}+4 x_{3} & =2 \\
x_{2}-x_{3} & =0 \\
7 x_{3} & =-7
\end{aligned} \rightarrow\right. \text { Solve }
$$

Find the solution of the above triangular system and verify that it is a solution of the original system
\qquad

Step k in words:

for each row i where i runs from $i=k+1$ to $i=n$ do: subtract $\boldsymbol{p i v}{ }^{*}$ row \boldsymbol{k} from row \boldsymbol{i} (where $\boldsymbol{p i v}=\boldsymbol{a}_{\boldsymbol{i k}} / \boldsymbol{a}_{\boldsymbol{k} \boldsymbol{k}}$).

ALGORITHM : 1. Gaussian Elimination

$$
\begin{aligned}
& \text {. For } k=1: n-1 \text { Do: } \\
& \text { For } i=k+1: n \text { Do: } \\
& p i v:=a_{i k} / a_{k k} \\
& \text { For } j:=k+1: n+1 \text { Do : } \\
& a_{i j}:=a_{i j}-p i v * a_{k j} \\
& \text { End } \\
& \text { End } \\
& \text {. End }
\end{aligned}
$$

Gaussian Elimination: The algorithm
Recall: an algorithm is a sequence of operations (a 'recipe') to be performed by a computer.

General step of Gaussian elimination :
$>$ At step k subtract multiples of row k from rows $k+1, k+$ Row k $2, \cdots, n$ in order to zero-out entries below $\boldsymbol{a}_{\boldsymbol{k} \boldsymbol{k}}$ in column \boldsymbol{k}. $>$ Repeat this step for $\boldsymbol{k}=$ $1,2, \ldots, n-1$

3-6 \qquad ${ }^{3-6}$

Matlab Script:

```
    function [x] = gauss (A, b)
% function [x] = gauss (A, b)
% solves A x = b by Gaussian elimination
    n = size(A,1) ;
    A = [A,b];
    for k=1:n-1
        for i=k+1:n
            piv = A(i,k) / A(k,k) ;
            A(i,k+1:n+1)=A(i,k+1:n+1)-piv*A(k,k+1:n+1);
        end
    end
    x = backsolv(A,A(:,n+1));
```

> Input: matrix \boldsymbol{A} and right-hand side \boldsymbol{b}. Output: solution \boldsymbol{x}.
> Invokes backsolv.m to solve final triangular system.

Gaussian Elimination: Pivoting

Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system

$$
\left\{\begin{array}{c}
2 x_{1}+2 x_{2}+4 x_{3}=2 \\
x_{1}+x_{2}+x_{3}=1 \\
x_{1}+4 x_{2}+6 x_{3}=-5
\end{array} \quad \text { Or: } \begin{array}{|ccc|c|}
\hline 2 & 2 & 4 & 2 \\
1 & 1 & 1 & 1 \\
1 & 4 & 6 & -5 \\
\hline
\end{array}\right.
$$

row $_{2}:=$ row $_{2}-\frac{1}{2} \times$ row $_{1}: \quad$ row $_{3}:=$ row $_{3}-\frac{1}{2} \times$ row $_{1}$:

$$
\begin{array}{|ccc|c|}
\hline 2 & 2 & 4 & 2 \\
0 & 0 & -1 & 0 \\
1 & 4 & 6 & -5 \\
\hline
\end{array}
$$

2	2	4	2
0	0	-1	0
0	3	4	-6

Pivot a_{22} is zero. Solution : permute rows 2 and $3 \longrightarrow$

$$
\begin{array}{|ccc|c|}
\hline 2 & 2 & 4 & 2 \\
0 & 3 & 4 & -6 \\
0 & 0 & -1 & 0 \\
\hline
\end{array}
$$

3-9

\qquad
3-9

Partial Pivoting: *Always* Permute row \boldsymbol{k} with row l such that

$$
\left|a_{l k}\right|=\max _{i=k, \ldots, n}\left|a_{i k}\right|
$$

More 'stable' algorithm.
\qquad
3-10

$$
\text { row }_{2}:=\text { row }_{2}-0.5 \times \text { row }_{1}: \quad \text { row }_{3}:=\text { row }_{3}-0.5 \times \text { row }_{1}:
$$

$\left.\begin{array}{c}\text { Step 1: } \left.\begin{array}{|ccc|c|}\hline 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 1 & 5 & 6 & -6\end{array} \right\rvert\,\end{array} \begin{array}{|c|c|c|c|}\hline 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \\ \hline\end{array}\right\}$

$$
\text { row }_{1}:=\text { row }_{1}-4 \times \text { row }_{2}: \quad \text { row }_{3}:=\text { row }_{3}-3 \times \text { row }_{2}:
$$

Step 2: \quad\begin{tabular}{|rrr|c|}
2 \& 0 \& 8 \& 2

0 \& 1 \& -1 \& 0

0 \& 3 \& 4 \& -7

\quad

\hline 2 \& 0 \& 8 \& 2

0 \& 1 \& -1 \& 0

0 \& 0 \& 7 \& -7

\hline
\end{tabular}

There is now a third step:
To transform: \(\left.\begin{array}{|ccc|c}2 \& 0 \& 8 \& 2

0 \& 1 \& -1 \& 0

0 \& 0 \& 7 \& -7\end{array}\right]\) into: | \boldsymbol{x} | $\mathbf{0}$ | $\mathbf{0}$ | \boldsymbol{x} |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{x} | $\mathbf{0}$ | \boldsymbol{x} |
| $\mathbf{0}$ | $\mathbf{0}$ | \boldsymbol{x} | \boldsymbol{x} |

$\operatorname{row}_{1}:=\operatorname{row}_{1}-\frac{8}{7} \times$ row $_{3}: \quad \operatorname{row}_{2}:=\operatorname{row}_{2}-\frac{-1}{7} \times$ row $_{3}:$

$$
\begin{aligned}
& \begin{array}{c}
\text { Step 3: }
\end{array} \quad \begin{array}{|rrr|c|}
\mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{1 0} \\
\mathbf{0} & \mathbf{1} & -1 & 0 \\
0 & 0 & \mathbf{7} & -\mathbf{7}
\end{array} \quad \quad \begin{array}{|lll|l|}
\hline \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{1 0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & -1 \\
\mathbf{0} & \mathbf{0} & \mathbf{7} & -7 \\
\hline
\end{array} \\
& \begin{array}{l}
\text { Final } \\
\text { System: }
\end{array}\left\{\left.\begin{array}{llll}
2 x_{1} & & & =10 \\
& x_{2} & & =-1 \\
& & 7 x_{3} & =-7
\end{array} \right\rvert\, \text { Solution: } \left\lvert\, \begin{array}{l}
x_{1}=5 \\
x_{2}=-1 \\
x_{3}=-1
\end{array}\right.\right. \\
& { }^{3-13}=
\end{aligned}
$$

Gauss-Jordan - variants

Common variant: Before an elimination step is started divide the row by diagonal entry $a_{k k}$

- At the end all diagonal entries are ones \rightarrow solution $=$ rhsRedo the previous example with this variant.Is this more or less costly than the original method?
NOTE: unless otherwise specified Gauss-Jordan will refer to this scaled version
- Also: Pivoting can be implemented just like Gaussian elimination. Important: Never swap a pivot row with a row above it! (destroys structure)

Linear systems - summary of complexity results

> The number of operations needed to solve a triangular linear system with \boldsymbol{n} unknowns is

$$
C_{T}(n)=n^{2}
$$

The number of operations required to solve a linear system with n unknowns by Gaussian elimination is

$$
C_{G}(n) \approx \frac{2}{3} n^{3}
$$

- The number of operations required to solve a linear system with n unknowns by Gauss-Jordan elimination is

$$
C_{G J}(n) \approx n^{3}
$$

Note: remember that Gauss-Jordan costs 50% more than Gauss.
\qquad Text: 1.1-. 2 - GaussJordan

