Matlab script gauss.m: a few explanations

```
function [x] = gauss (A, b)
% function [x] = gauss (A, b)
% solves A x = b by Gaussian elimination
n = size(A,1);
A = [A,b];
for k=1:n-1
    for i=k+1:n
        piv = A(i,k) / A(k,k);
        A(i,k+1:n+1)=A(i,k+1:n+1)-piv*A(k,k+1:n+1);
        end
end
x = backsolv(A,A(:,n+1));
```

Function	<pre>function [x] = gauss (A, b) % function [x] = gauss (A, b) % solves A x = b by Gaussian elimination</pre>
	•••

Text: 1.1 – MLgauss

- The file containing the above script should be called gauss.m.
- The syntax for function is simple:

4-2

function [Output-args] = func-name(Input-args)
% lines of comments

• Takes input arguments. Computes some values and returns them in the output arguments.

The gauss.m script has 2 input arguments (A and b) and one output argument (x)

• % indicates a commented line. First few lines of comments after function header are echoed when you type

>> help func-name For example >> help gauss

n = size(A,1) ; A = [A,b];	<pre>% < n=Number of rows in matrix % < Adds b as last column of A % Now A contains augmented system. % It has size n x (n+1)</pre>
<pre>for k=1:n-1 for i=k+1:n commands end end</pre>	<pre>% Main loop in GE for each k % sweep rows i=k+1 to i=n % these commands will each combine % row i with a mulitple of row k</pre>

Example: Step
$$k=3$$
 $(n=6)$

for i=4:6
 piv=a(i,3)/a(3,3);
 row_i=row_i-piv*row_3;
end

*	*	*	*	*	*	*
0	*	*	*	*	*	*
0	0	*	*	*	*	*
0	0	*	*	*	*	*
0	0	*	*	*	*	*
0	0	*	*	*	*	*

Text: 1.1 – MLgauss

piv = A(i,k) / A(k,k) ;
A(i,k+1:n+1)=A(i,k+1:n+1)-piv*A(k,k+1:n+1);

The above: 1) computes the multiplier (pivot) to use in the elimination; 2) combines rows. Result = a zero in position (i, k).

> When combining row i with row k no need to deal with zeros in columns 1 to k - 1. Result will be zero.

> Also we know A(i, k) will be zero – can be skipped.

> Result: need to combine rows from positions k+1 to n+1.

x = backsolv(A,A(:,n+1));

The above invokes the back-solve script to solve the final system

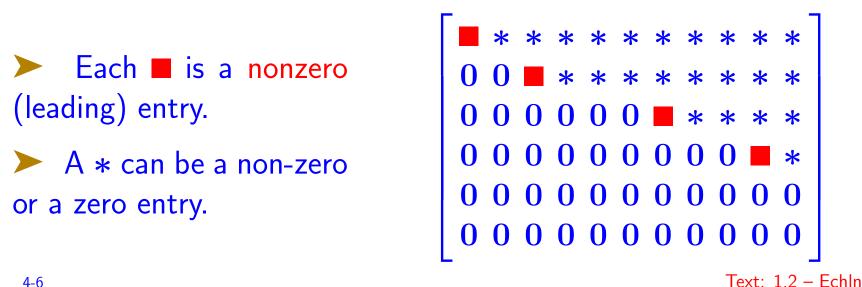
Text: 1.1 – MLgauss

THE ECHELON FORM [1.2]

The standard echelon form

A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.



Mhich of these matrices is in Row Echelon Form? [* = nonzero]

Text: 1.2 – Echln

► A sort of 'stretched' (to the right) upper triangular form with structure of some columns repeated

Ignore the formal definition for a moment - use intuition from Gaussian Elimination. Example:

1st step of Gaussian Elimination yields:

4-8

 $\leftarrow a_{22}$ is zero and pivoting does not help. Skip & go to 3rd column where $a_{23} = -1$:

 ▶ GE on rows 2 & 3:
 ▶ $row_3 := row_3 - (-3) * row_2$ Result: →

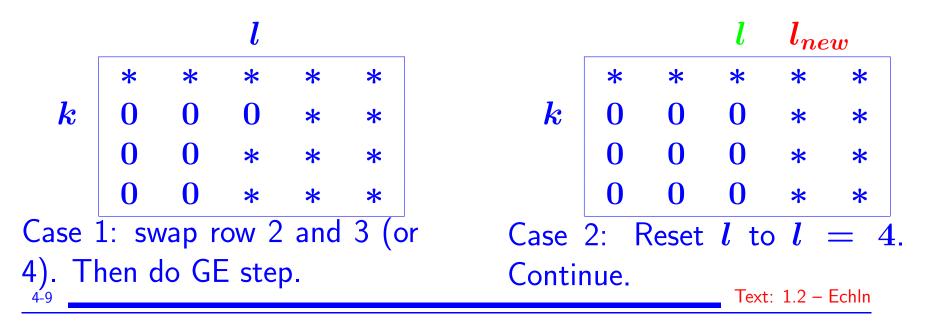
In words: Row Echelon algorithm is a variant of Gaussia Elimination (with pivoting).

* Step k now has two indices: pivot row k and pivot column l. (At the start k = 1, l = 1.)

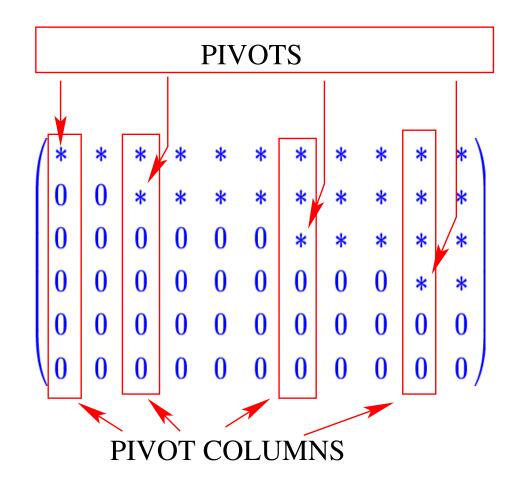
* Step k : Try to eliminate entries $a_{k+1,l}$, $a_{k+2,l}$,, $a_{m,l}$.

* Do pivoting if necessary and try perform Gaussian Elimination.

* If the sub-column is all zero, set l := l + 1 and repeat.



Terminology: Pivots, and pivot columns



Important in capturing the span of the columns of A (called the range of A - to be covered in detail later)

The reduced row echelon form

Definition: A matrix is in reduced echelon form (or reduced row
echelon form) if:Matlab: rref

[1–3] It is in echelon form and, in addition,

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

How would you obtain the rref from the standard echelon form? 4-11 Text: 1.2 – Echln ► Any nonzero matrix may be row reduced (i.e., transformed by elementary row operations) into more than one matrix in echelon form, using different sequences of row operations.

► However, the reduced echelon form one obtains from a matrix is unique:

Each matrix is row equivalent to one and only one reduced echelon matrix.

Remember that the permissible row operations are:

1) Interchange; 2) addition; 3) scaling.

Pivot position

A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.

$$\begin{bmatrix} 1 & * & 0 & * & * & 0 & * & * & 0 & * \\ & 1 & * & * & 0 & * & * & 0 & * \\ & & & 1 & * & * & 0 & * \\ & & & & 1 & * & 0 & * \\ & & & & & 1 & * \end{bmatrix}$$

In this example, the pivot columns are 1, 3, 7, and 10
 Find out how to get the pivot positions from matlab's rref

Example with standard echelon Form

Example: Row reduce the matrix A below to echelon form, and locate the pivot columns of A.

Solution: The top of the leftmost nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed in this position.

► Interchange rows 1 and 4 (note: in reality it is preferable to interchange rows 1 and 3. Why?)

↓ Pivot

				-7
-1	-2	-1	3	1
-2	-3	0	3	-1
0	-3	-6	4	9

↑ Pivot Column

 \blacktriangleright Create zeros below the pivot, 1, by adding multiples of the first row to the rows below \longrightarrow Next matrix:

Next pivot column

4-15

Next pivot column: Add -5/21 4 5 -7**-9** times row 2 to row 3, and add 3/20 2 4 -6 **-6** times row 2 to row 4. 0 0 0 0 0 Result: 0 0 0 -5 0

➤ Can't create a leading entry in column 3 → Move to col. 4.
 Swap rows 3 & 4. Done.
 ➤ Pivot columns: 1, 2, and 4.

4-16

1	4	5	-9	-7
0	2	4	-6	-6
0	0	0	-5	0
0	0	0	0	0

Recall: Algorithm to get standard row echelon form is a form of Gaussian elimination with pivoting

Algorithm to get reduced row echelon form is a form of Gauss-Jordan elimination with pivoting

Next: same example done with reduced form

Same example with reduced echelon Form

• Initial matrix below. First step same: swap rows 1 & 4

0	-3	-6	4	9	1	4	5	-9	-7
-1	-2	-1	3	1	-1	-2	-1	3	1
-2	-3	0	3	-1	-2	-3	0	3	-1
1	4	5	-9	-7	0	-3	-6	4	$-7 \\ 1 \\ -1 \\ 9$

• Next: Create zeros below the pivot, 1, by adding multiples of the first row to the rows below it.

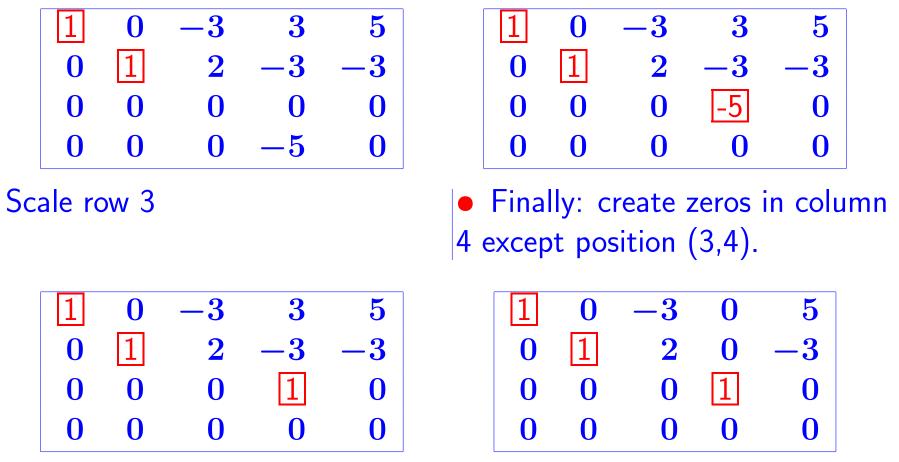
 \longrightarrow Next matrix:

4-17

• Scale 2nd row:

1	4	5	-9	-7	1	4	5	-9	-7
0	2	4	-6	-6	0	1	2	-3	$-7 \\ -3 \\ -15 \\ 9$
0	5	10	-15	-15	0	5	10	-15	-15
0	-3	-6	4	9	0	-3	-6	4	9

Next step: create zeros in Move *l* to column 4; Swap rows column 2 [except position (2,2)]
4, 5;



Pivot positions: 1, 2, 4. They are (always) identical with those obtained from Standard Row Echelon form.

APPLICATIONS OF THE ECHELON FORM [1.3]

Solving a general linear system

Question: What are *all* the solutions of a linear system [A, b]

Recall that we have 3 scenarios: 1) 0 solution; 2) infinitely many sols.; 3) exactly one solution.

Set is called "general solution" or "complete solution"

Answer provided by echelon form [reduced or standard]

Step 1Form theaugmentedsystem[A, b]

4-20

*	*	*	*	*	*		*	*	*	*
*	*	*	*	*	*		*	*	*	*
*	*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*		*	*	*	*
*	*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*

	1	*	0	*	*	*	0	*	*	0	*	
Step 2 Obtain the re-											*	
duced echelon form.							1	*	*	0	*	
Result is something like:										1	*	

Important: Solutions to this system same as those of [A, b]. So w'll find the solutions from this reduced system

What can you say if the last column (RHS) happens to be a pivot column?

- Unknowns associated with pivots are called basic
- > Others are called free

4-21

▶ In above example: 1, 3, 7, 10 are basic, 2, 4, 5, 6, 8, 9, are free, and column 11 is the RHS (not a variable).

Step 3 Write solutions: solutions depend on parameters which are the free variables.

- Express basic variables in terms of the free variables
- > For any values given to the free variables you will get a solution
- For example for the above picture: $x_{10} = b_4$; $x_7 = b_3 - \text{scalar.} x_8 - \text{scalar.} x_9$ etc..
- Find general solution when augmented matrix is:

1	2	0	0	1	0	0	-2
1	2	-1	-2	2	2	3	-3
1	2	2	4	-3	-4	-4	$-2\\-3\\-6$
0	0	1	2	-3	0	-5	-3
							1

Get the reduced echelon form [use matlab!]

Note: It is also possible to use the standard (non-reduced) row-echelon form - Requires back substitution. Result is the same.

🎮 What if last component of RHS is zero (i.e., $oldsymbol{A}(5,8)=0)$

4-23

Below is the standard echelon form for the previous example. Find all solutions.

1	2	0	0	1	0	0	-2
0	0	2	4	$1 \\ -4$	-4	-4	-4
0	0	0	0	-1	0	1	-3
0	0	0	0	0	2	-4	2
0	0	0	0	0	0	0	0

 \checkmark Find all solutions for which x_4 and x_7 are zero.

4-24

Among these find all solutions for which x_1 is zero.

We seek 5 numbers x_1, \dots, x_5 such that their sum is 50, the sum of 3 of them (e.g. the odd-labeled ones) is 25, and the difference between the other 2 is 5. Write the equations to be satisfied and find the general solution.