#### VECTORS [PARTS OF 1.3]

#### Vectors and the set $\mathbb{R}^n$

A vector of dimension n is an ordered list of n numbers **Example:** 

$$v = egin{bmatrix} 1 \ -2 \ 1 \end{bmatrix}; \quad w = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}; z = egin{bmatrix} 0 \ 1 \ -1 \ 4 \end{bmatrix}.$$

 $\blacktriangleright$  v is in  $\mathbb{R}^3$ , w is in  $\mathbb{R}^2$  and  $oldsymbol{z}$  is in  $\mathbb{R}^?$ 

5-2

▶ In  $\mathbb{R}^3$  the  $\mathbb{R}$  stands for the set of real numbers that appear as entries in the vector, and the exponents 3, indicate that each vector contains 3 entries.

 $\blacktriangleright$  A vector can be viewed just as a matrix of dimension m imes 1

 $\triangleright$   $\mathbb{R}^n$  is the set of all vectors of dimension n. We will see later that this is a vector space, i.e., a set that has some special properties with respect to operations on vectors.

Two vectors in  $\mathbb{R}^n$  are equal when their corresponding entries are all equal.

For two vectors u and v in  $\mathbb{R}^n$ , their sum is the vector u + v obtained by adding corresponding entries of u and v

For a vector u and a real number  $\alpha$ , the scalar multiple of u by  $\alpha$  is the vector  $\alpha u$  obtained by multiplying each entry in u by  $\alpha$ 

> (!) Note: the two vectors must be both in  $\mathbb{R}^n$ , i.e., then both have n components.

Let us look at this in detail

# Sum of two vectors

$$x=egin{bmatrix} x_1\ x_2\ x_3\end{bmatrix}; \hspace{0.5cm} y=egin{bmatrix} y_1\ y_2\ y_3\end{bmatrix}; \hspace{0.5cm} operator ext{ } x+y=egin{bmatrix} x_1+y_1\ y_2+x_2\ x_3+y_3\end{bmatrix}$$

with numbers:

$$x = egin{bmatrix} -1 \ 2 \ 3 \end{bmatrix}; \quad y = egin{bmatrix} 0 \ 3 \ -3 \end{bmatrix}; \quad o \quad x+y = egin{bmatrix} -1 \ 5 \ ?? \end{bmatrix}$$

Multiplication by a scalar

Given: a number lpha (a 'scalar') and a vector x:

$$lpha \in \mathbb{R}, \hspace{0.3cm} x \in \mathbb{R}^3, 
ightarrow lpha x = egin{bmatrix} lpha x_1 \ lpha x_2 \ lpha x_3 \end{bmatrix}$$

with numbers:

$$lpha = 4; \quad x = egin{bmatrix} -1 \ 2 \ 3 \end{bmatrix} o lpha x = egin{bmatrix} -4 \ 8 \ 12 \end{bmatrix}$$

In the text vectors are represented by bold characters and scalars by light characters. We will often use Greek letters for scalars and regular latin symbols for vectors

Text: 1.3 – Vectors

#### Properties of + and $\alpha *$

The vector whose entries are all zero is called the zero vector and is denoted by 0.

- (a) x + y = y + x (Addition is commutative)
- (b) x + (y + z) = (x + y) + z (Addition is associative)
- (c) 0 + x = x + 0 = x, (0 is the vector of all zeros)
- (d) x + (-x) = -x + x = 0 (-x is the vector (-1)x)
- (e)  $\alpha(x+y) = \alpha x + \alpha y$
- (f)  $(\alpha + \beta)x = \alpha x + \beta x$
- (g) (lphaeta)x = lpha(eta x)
- (h)  $\mathbf{1}x = x$  for any x

5-6

Text: 1.3 – Vectors

## Linear combinations

Very important concept ..

5-7

A linear combination of m vectors is a vector of the form:

$$x = lpha_1 x_1 + lpha_2 x_2 + \dots + lpha_m x_m$$

where  $\alpha_1, \alpha_2, \cdots, \alpha_m$ , are scalars and  $x_1, x_2, \cdots, x_m$ , are vectors in  $\mathbb{R}^n$ .

The scalars  $\alpha_1, \alpha_2, \cdots, \alpha_m$  are called the weights of the linear combination

They can be any real numbers, including zero

## Linear combinations

5-8

**Example:**Linear combinations of vectors in  $\mathbb{R}^3$ : $u = 2 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix};$  $w = 2 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ And we have: $u = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix};$  $w = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix}$ 

*Note:* for w the second weight is -1 and the third is +1.

#### The linear span of a set of vectors

Definition: If  $v_1, \dots, v_p$  are in  $\mathbb{R}^n$ , then the set of all linear combinations of  $v_1, \dots, v_p$  is denoted by span $\{v_1, \dots, v_p\}$  and is called the subset of  $\mathbb{R}^n$  spanned (or generated) by  $v_1, \dots, v_p$ . That is, span $\{v_1, \dots, v_p\}$  is the collection of all vectors that can be written in the form  $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_p v_p$  with  $\alpha_1, \alpha_2, \dots, \alpha_p$  scalars.

 $\checkmark$  What is  $\mathrm{span}\{u\}$  in  $\mathbb{R}^2$  where  $u=\left|egin{smallmatrix}2\\0\end{smallmatrix}
ight|?$ 

 $\checkmark$  What is  $\operatorname{span}\{v\}$  in  $\mathbb{R}^2$  where  $v=ig|igcap_{-1}^1|$  ?

5-9

 $\checkmark$  What is  $\mathrm{span}\{u,v\}$  in  $\mathbb{R}^2$  with u,v given above?

Text: 1.3 – Vectors

✓ Does the vector   

$$\begin{bmatrix} -1\\1 \end{bmatrix}$$
 belong to this span{ $u, v$ }?
✓ Same question for the vector   

$$\begin{bmatrix} 1\\1 \end{bmatrix}$$

✓ What is span{ $u, v$ } in   
 $\mathbb{R}^3$  when:
$$u = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}; v = \begin{bmatrix} 0\\2\\-1 \end{bmatrix}?$$

$$a = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}; b = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}$$

belong to span{ $u, v$ } found in the previous question.?

✓ Is span{u, v} the same as span{v, u}?
✓ Is span{u, v} the same as span{2u, -3v}?

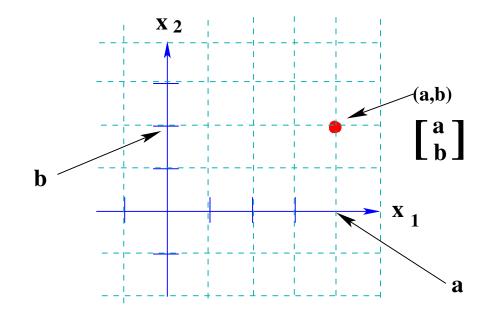
#### Geometric representation of $\mathbb{R}^2$ and $\mathbb{R}^3$

Consider a rectangular coordinate system in the plane. The illustration shows the vector

$$x = \begin{bmatrix} a \\ b \end{bmatrix}$$

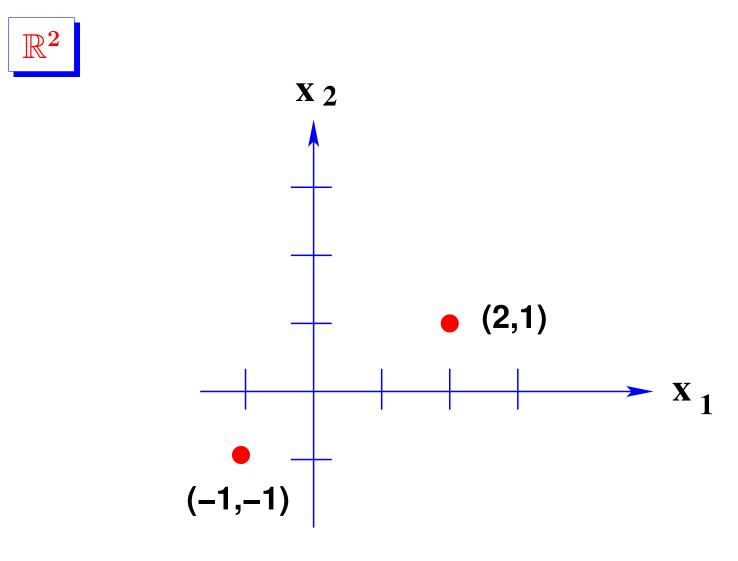
with a = 4, b = 2.

5-11



Each point in the plane is determined by an ordered pair of numbers, so we identify a geometric point (a, b) with the column vector  $\begin{bmatrix} a \\ b \end{bmatrix}$ 

 $\blacktriangleright$  We may regard  $\mathbb{R}^2$  as the set of all points in the plane

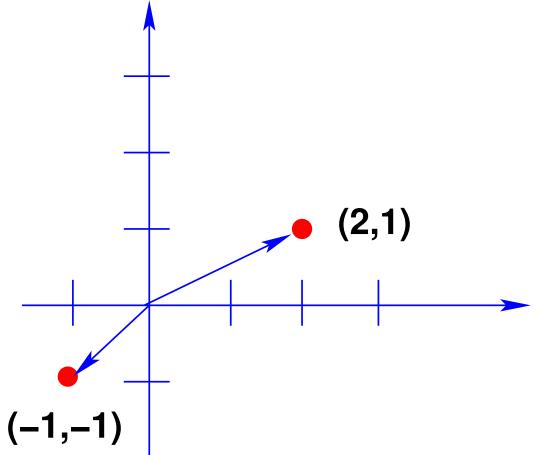


 $\succ x_1$  in the horizontal direction,  $x_2$  in vertical direction

5-12

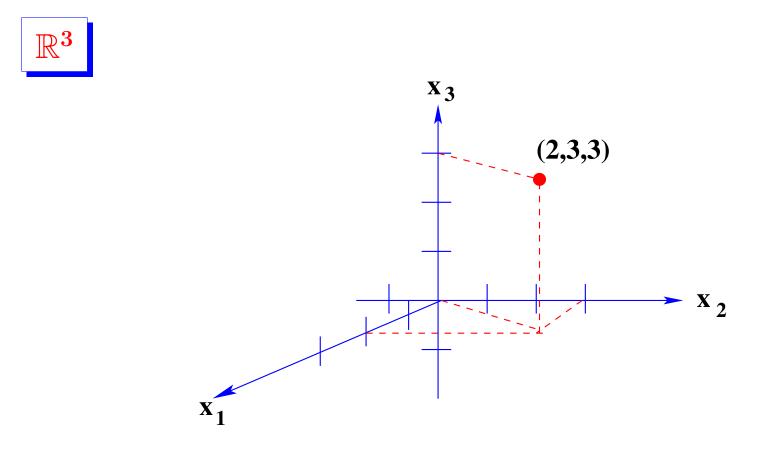
Text: 1.3 – Vectors





5-13

Text: 1.3 – Vectors



5-14

horizontal =  $x_2$ , vertical= $x_3$ , back to front direction =  $x_1$  (However some representations may differ). We will use this one.

## Geometric interpretation of addition of 2 vectors

First viewpoint:

5-15

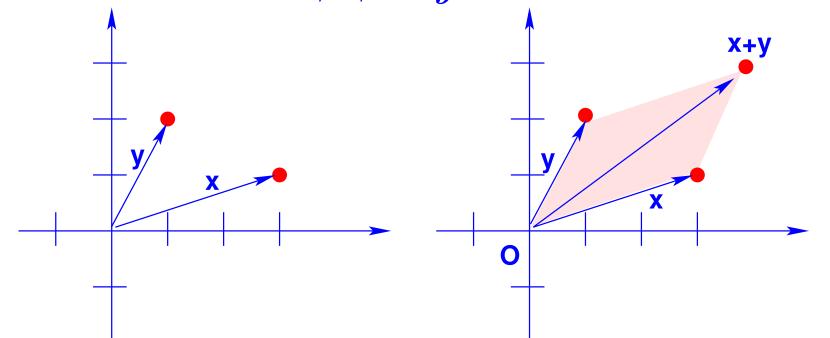
Think of moving ("rigidly") one of the vectors so its origin is at endpoint of the other vector. Then x + y is the vector from origin to the end point of the shifted vector.



#### Second viewpoint:

5-16

x + y correponds to the fourth vertex of the parallelogram whose other three vertices are: O, x, and y



Using the first viewpoint, show geometrically how to add the 3 vectors

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ 

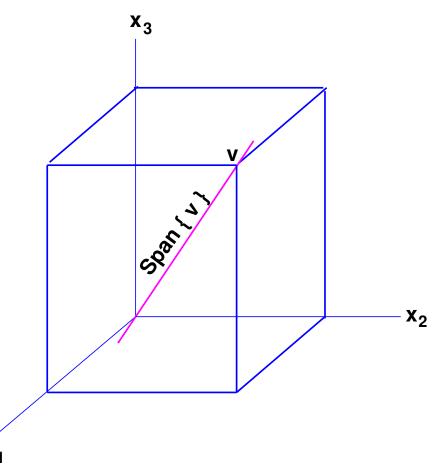
Geometric interpretation of span{v}

 $\blacktriangleright$  Let v be a nonzero vector in $\mathbb{R}^3$ 

Then span $\{v\}$  is the set of all scalar multiples of v

This is also the set of points on the line in  $\mathbb{R}^3$  through v and 0.

5-17

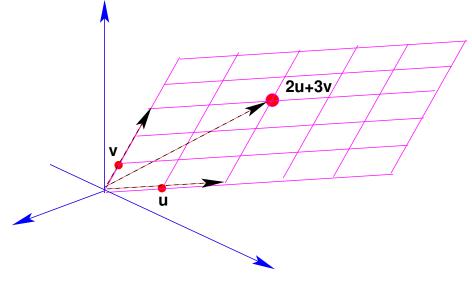


⁄Х

## Geometric interpretation of span $\{u, v\}$

Let u, v be two nonzero vectors in  $\mathbb{R}^3$  with v not a multiple of u.

Then span{u, v}
 is the plane in R<sup>3</sup> that contains u, v, and 0.
 In particular, span{u, v} contains the two lines span{u} and span{v}



(See also Figure 1.1 from text).

#### LINEAR INDEPENDENCE [1.7]

# Linear independence [Important]

Definition

The set  $\{v_1, ..., v_p\}$  is said to be linearly dependent if there exist weights  $c_1, ..., c_p$ , not all zero, such that

$$c_1v_1 + c_2v_2 + ... + c_pv_p = 0$$

It is linearly independent otherwise
 The above equation is called linear dependence relation among the vectors v<sub>1</sub>, ..., v<sub>p</sub>

► Another way to express dependence: A set of vectors is linearly dependent if and only if there is one vector among them which is a linear combination of all the others.

🙇 Prove this

*Q:* Why do we care about linear independence?

A: When expressing a vector x as a linear combination of a system  $\{v_1, \cdots, v_p\}$  that is linearly dependent, then we can find a smaller system in which we can express x

A dependent system is 'redundant'

5-21

📧 Let  $v_1 = egin{bmatrix} 1 \\ 1 \end{bmatrix}$  . Is  $\{v_1\}$  linearly independent? [here: p=1]

A system consisting of a nonzero vector [at least one nonzero entry] is always linearly independent: True - False?

Are the following systems linearly independent:

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} -10\\0 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix} \right\}?$$

Text: 1.7 – LinearInd

 $\checkmark$  A system  $\{u, v\}$  is linearly dependent when \_\_\_\_\_

$$\swarrow \quad \text{Let} \quad v_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}; \quad v_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}; \quad v_3 = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix};$$

(a) Determine if  $\{v_1, v_2, v_3\}$  is linearly independent

(b) If possible find a linear dependence relation among  $v_1, v_2, v_3$ . *Solution:* We must determine if the system:

$$x_1 egin{bmatrix} 1 \ 1 \ 2 \end{bmatrix} + x_2 egin{bmatrix} 4 \ 1 \ 5 \end{bmatrix} + x_3 egin{bmatrix} -2 \ 3 \ 1 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \ 0 \end{bmatrix}$$

has a nontrivial solution (Trivial solution:  $x_1 = x_2 = x_3 = 0$ )

?

Augmented syst: Echelon 1st step

Echelon 2nd step

| 1 | 4 | -2 | 0 |
|---|---|----|---|
| 1 | 1 | 3  | 0 |
| 2 | 5 | 1  | 0 |

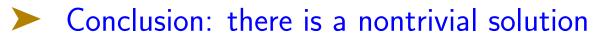
-2|04 0 - 3 5 | 00 - 3 50

$$\begin{array}{ccccccc} 1 & 4 & -2 & 0 \\ 0 & -3 & 5 & 0 \\ 0 & 0 & 0 & 0 \end{array}$$

This system is equivalent to original one.

 $\succ$  Variable  $x_3$  is free.

 $\blacktriangleright$  Select  $x_3 = 3$  (to avoid fractions) and back-solve for  $x_2$   $(x_2 =$ 5), and  $x_1$ ,  $(x_1 = -14)$ 



# NOT independent

5-23

(b) Linear dependence relation: From above,

$$-14v_1 + 5v_2 + v_3 = 0$$

Note: Text uses the reduced echelon form instead of back-solving [Result is clearly the same. Both solutions are OK]

With the reduced row echelon form

$$\begin{array}{ccccc} 1 & 0 & 14/3 & 0 \\ 0 & 1 & -5/3 & 0 \\ 0 & 0 & 0 & 0 \end{array}$$

► 
$$x_1 = -(14/3)x_3;$$
  $x_2 = (5/3)x_3$ 

$$\blacktriangleright$$
 select  $x_3=3$  then  $x_2=5, x_1=14$ 

5-24

 $\blacktriangleright$  Recall:  $x_1, x_2$  are basic variables, and  $x_3$  is free