VECTORS [PARTS OF 1.3]

\mathbb{R}^{n} is the set of all vectors of dimension n. We will see later that this is a vector space, i.e., a set that has some special properties with respect to operations on vectors.
> Two vectors in \mathbb{R}^{n} are equal when their corresponding entries are all equal.
$>$ Given two vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^{n}, their sum is the vector $\boldsymbol{u}+\boldsymbol{v}$ obtained by adding corresponding entries of \boldsymbol{u} and \boldsymbol{v}

- Given a vector \boldsymbol{u} and a real number $\boldsymbol{\alpha}$, the scalar multiple of \boldsymbol{u} by α is the vector αu obtained by multiplying each entry in \boldsymbol{u} by $\boldsymbol{\alpha}$ (!) Note: the two vectors must be both in \mathbb{R}^{n}, i.e., then both have \boldsymbol{n} components.
> Let us look at this in detail

Vectors and the set \mathbb{R}^{n}

$>$ A vector of dimension \boldsymbol{n} is an ordered list of \boldsymbol{n} numbers

Example:

$$
v=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] ; \quad w=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; z=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
4
\end{array}\right]
$$

\boldsymbol{v} is in $\mathbb{R}^{3}, \boldsymbol{w}$ is in \mathbb{R}^{2} and \boldsymbol{z} is in $\mathbb{R}^{?}$
$\geqslant \ln \mathbb{R}^{3}$ the \mathbb{R} stands for the set of real numbers that appear as entries in the vector, and the exponents 3 , indicate that each vector contains 3 entries.

- A vector can be viewed just as a matrix of dimension $m \times 1$

5-2

Sum of two vectors

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] ; \quad y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] ; \quad \rightarrow \quad x+y=\left[\begin{array}{l}
x_{1}+y_{1} \\
y_{2}+x_{2} \\
x_{3}+y_{3}
\end{array}\right]
$$

with numbers:

$$
x=\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right] ; \quad y=\left[\begin{array}{c}
0 \\
3 \\
-3
\end{array}\right] ; \quad \rightarrow \quad x+y=\left[\begin{array}{c}
-1 \\
5 \\
? ?
\end{array}\right]
$$

Multiplication by a scalar

Given: a number $\boldsymbol{\alpha}$ (a 'scalar') and a vector \boldsymbol{x} :

$$
\alpha \in \mathbb{R}, \quad x \in \mathbb{R}^{3}, \rightarrow \alpha x=\left[\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2} \\
\alpha x_{3}
\end{array}\right]
$$

with numbers:

$$
\alpha=4 ; \quad x=\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right] \rightarrow \alpha x=\left[\begin{array}{c}
-4 \\
8 \\
12
\end{array}\right]
$$

In the text vectors are represented by bold characters and scalars by light characters. We will often use Greek letters for scalars and regular latin symbols for vectors

Linear combinations

> Very important concept ..
A linear combination of \boldsymbol{m} vectors is a vector of the form:

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{m} x_{m}
$$

where $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}$, are scalars and $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{m}$, are vectors in \mathbb{R}^{n}.
$>$ The scalars $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ are called the weights of the linear combination
> They can be any real numbers, including zero

Properties of + and $\alpha *$

> The vector whose entries are all zero is called the zero vector and is denoted by 0 .

- (a) $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$ (Addition is commutative)
- (b) $\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})=(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}$ (Addition is associative)
- (c) $0+\boldsymbol{x}=\boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$, $(\mathbf{0}$ is the vector of all zeros)
- (d) $x+(-x)=-x+x=0(-x$ is the vector $(-1) x)$
- (e) $\alpha(x+y)=\alpha \boldsymbol{x}+\boldsymbol{\alpha} \boldsymbol{y}$
- (f) $(\alpha+\beta) x=\alpha x+\beta x$
- (g) $(\boldsymbol{\alpha} \boldsymbol{\beta}) x=\alpha(\beta x)$
- (h) $1 x=x$ for any x

${ }^{5-6}$

Linear combinations

Example: Linear combinations of vectors in \mathbb{R}^{3} :

$$
u=2\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] ; \quad w=2\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]
$$

And we have:

$$
u=\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right] ; \quad w=\left[\begin{array}{l}
? \\
? \\
?
\end{array}\right]
$$

Note: for \boldsymbol{w} the second weight is -1 and the third is +1 .

The linear span of a set of vectors

Definition: If $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{\boldsymbol{p}}$ are in $\mathbb{R}^{\boldsymbol{n}}$, then the set of all linear combinations of v_{1}, \cdots, v_{p} is denoted by $\operatorname{span}\left\{v_{1}, \cdots, v_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned (or generated) by v_{1}, \cdots, v_{p}. That is, $\operatorname{span}\left\{v_{1}, \cdots, v_{p}\right\}$ is the collection of all vectors that can be written in the form $\alpha_{1} \boldsymbol{v}_{1}+\boldsymbol{\alpha}_{2} \boldsymbol{v}_{2}+\cdots+\boldsymbol{\alpha}_{p} \boldsymbol{v}_{p}$ with $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}$ scalars.

What is $\operatorname{span}\{u\}$ in \mathbb{R}^{2} where $u=\left[\begin{array}{l}2 \\ 0\end{array}\right] ?$
What is $\operatorname{span}\{v\}$ in \mathbb{R}^{2} where $v=\left[\begin{array}{c}1 \\ -1\end{array}\right]$?What is $\operatorname{span}\{u, v\}$ in \mathbb{R}^{2} with u, v given above? 5-9

Geometric representation of \mathbb{R}^{2} and \mathbb{R}^{3}

Consider a rectangular coordinate system in the plane. The illustration shows the vector

$$
x=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

with $a=4, b=2$.

$>$ Each point in the plane is determined by an ordered pair of numbers, so we identify a geometric point $(\boldsymbol{a}, \boldsymbol{b})$ with the column vector $\left[\begin{array}{l}\boldsymbol{a} \\ \boldsymbol{b}\end{array}\right]$
> We may regard \mathbb{R}^{2} as the set of all points in the plane
$>$ Often we draw an oriented line from origin to the point:

\mathbb{R}^{3}

horizontal $=x_{2}$, vertical $=x_{3}$, back to front direction $=x_{1}$ (However some representations may differ). We will use this one.
\qquad

Geometric interpretation of addition of 2 vectors

First viewpoint:

Think of moving ("rigidly") one of the vectors so its origin is at endpoint of the other vector. Then $\boldsymbol{x}+\boldsymbol{y}$ is the vector from origin to the end point of the shifted vector.

Second viewpoint:

$x+y$ correponds to the fourth vertex of the parallelogram whose other three vertices are: $\mathrm{O}, \boldsymbol{x}$, and \boldsymbol{y}

Using the first viewpoint, show geometrically how to add the 3 vectors

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0
\end{array}\right], \text { and }\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]
$$

Geometric interpretation of $\operatorname{span}\{v\}$

Let \boldsymbol{v} be a nonzero vector in \mathbb{R}^{3}
$>$ Then $\operatorname{span}\{v\}$ is the set of all scalar multiples of \boldsymbol{v}
$>$ This is also the set of points on the line in \mathbb{R}^{3} through \boldsymbol{v} and $\mathbf{0}$.

Linear independence [Important]

Definition

$>$ The set $\left\{v_{1}, \ldots, v_{p}\right\}$ is said to be linearly dependent if there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=0
$$

It is linearly independent otherwise
$>$ The above equation is called linear dependence relation among the vectors v_{1}, \cdots, v_{p}Another way to express dependence: A set of vectors is linearly dependent if and only if there is one vector among them which is a linear combination of all the others.

Prove this

Q: Why do we care about linear independence?
A: When expressing a vector x as a linear combination of a system $\left\{v_{1}, \cdots, v_{p}\right\}$ that is linearly dependent, then we can find a smaller system in which we can express x
$>$ A dependent system is 'redundant'
Let $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Is $\left\{v_{1}\right\}$ linearly independent? [here: $p=1$]A system consisting of a nonzero vector [at least one nonzero entry] is always linearly independent: True - False?

* Are the following systems linearly independent:

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\}, \quad\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-10 \\
0
\end{array}\right]\right\}, \quad\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\} ?
$$

\qquad

Augmented syst:

1	4	-2	0
1	1	3	0
2	5	1	0

1	4	-2	0
1	1	3	0

$\begin{array}{lll}2 & 5 & 1\end{array} 0$
Echelon 1st step
Echelon 2nd step

$$
\begin{array}{|ccc|c|}
\hline 1 & 4 & -2 & 0 \\
0 & -3 & 5 & 0 \\
0 & -3 & 5 & 0 \\
\hline
\end{array}
$$

$>$ This system is equivalent to original one.
$>$ Variable x_{3} is free.
$>$ Select $x_{3}=3$ (to avoid fractions) and back-solve for $x_{2}\left(x_{2}=\right.$ $5)$, and $x_{1},\left(x_{1}=-14\right)$
> Conclusion: there is a nontrivial solution
$>$ NOT independent
(b) Linear dependence relation: From above,

$$
-14 v_{1}+5 v_{2}+v_{3}=0
$$A system $\{u, v\}$ is linearly dependent when \qquad ?Let $\quad v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right] ; \quad v_{2}=\left[\begin{array}{l}4 \\ 1 \\ 5\end{array}\right] ; \quad v_{3}=\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right] ;$

(a) Determine if $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent
(b) If possible find a linear dependence relation among $v_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$.

Solution: We must determine if the system:

$$
x_{1}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

has a nontrivial solution (Trivial solution: $x_{1}=x_{2}=x_{3}=0$)

$$
5-22
$$

Note: Text uses the reduced echelon form instead of back-solving [Result is clearly the same. Both solutions are OK]
> With the reduced row echelon form

1	0	$14 / 3$	0
0	1	$-5 / 3$	0
0	0	0	0

$>x_{1}=-(14 / 3) x_{3} ; \quad x_{2}=(5 / 3) x_{3}$
$>$ select $x_{3}=3$ then $x_{2}=5, x_{1}=14$
$>$ Recall: x_{1}, x_{2} are basic variables, and x_{3} is free

