	Vectors and the set \mathbb{R}^n
	A vector of dimension n is an ordered list of n numbers Example:
VECTORS [PARTS OF 1.3]	$v=egin{bmatrix}1\-2\1\end{bmatrix}; \hspace{0.3cm} w=egin{bmatrix}0\1\end{bmatrix}; z=egin{bmatrix}0\1\-1\4\end{bmatrix}.$
	$ ightarrow v$ is in \mathbb{R}^3 , w is in \mathbb{R}^2 and $oldsymbol{z}$ is in $\mathbb{R}^?$
	In \mathbb{R}^3 the \mathbb{R} stands for the set of real numbers that appear as entries in the vector, and the exponents 3, indicate that each vector contains 3 entries.
	\blacktriangleright A vector can be viewed just as a matrix of dimension $m imes 1$
	5-2 Text: 1.3 – Vectors
5-1	5-2

 \triangleright \mathbb{R}^n is the set of all vectors of dimension n. We will see later that this is a vector space, i.e., a set that has some special properties with respect to operations on vectors.

> Two vectors in \mathbb{R}^n are equal when their corresponding entries are all equal.

 \blacktriangleright Given two vectors u and v in \mathbb{R}^n , their sum is the vector u+v obtained by adding corresponding entries of u and v

For a vector u and a real number α , the scalar multiple of u by α is the vector αu obtained by multiplying each entry in u by α

> (!) Note: the two vectors must be both in \mathbb{R}^n , i.e., then both have n components.

5-3

> Let us look at this in detail

Sum of two vectors

$$egin{array}{lll} x=egin{bmatrix} x_1\ x_2\ x_3\end{bmatrix}; & y=egin{bmatrix} y_1\ y_2\ y_3\end{bmatrix}; & o & x+y=egin{bmatrix} x_1+y_1\ y_2+x_2\ x_3+y_3\end{bmatrix} \end{array}$$

with numbers:

$$x = egin{bmatrix} -1 \ 2 \ 3 \end{bmatrix}; \quad y = egin{bmatrix} 0 \ 3 \ -3 \end{bmatrix}; \quad o \quad x + y = egin{bmatrix} -1 \ 5 \ ?? \end{bmatrix}$$

5-4

5-3

Text: 1.3 – Vectors

Multiplication by a scalar

 \blacktriangleright Given: a number α (a 'scalar') and a vector x:

$$lpha \in \mathbb{R}, \hspace{1em} x \in \mathbb{R}^3,
ightarrow lpha x = egin{bmatrix} lpha x_1 \ lpha x_2 \ lpha x_3 \end{bmatrix}$$

with numbers:

$$lpha=4; \ \ x=egin{bmatrix} -1 \ 2 \ 3 \end{bmatrix} o lpha x=egin{bmatrix} -4 \ 8 \ 12 \end{bmatrix}$$

In the text vectors are represented by bold characters and scalars by light characters. We will often use Greek letters for scalars and regular latin symbols for vectors

5-5

Properties of + and $\alpha *$

► The vector whose entries are all zero is called the zero vector and is denoted by 0.

- (a) x + y = y + x (Addition is commutative)
- (b) x + (y + z) = (x + y) + z (Addition is associative)
- (c) 0 + x = x + 0 = x, (0 is the vector of all zeros)
- (d) x + (-x) = -x + x = 0 (-x is the vector (-1)x)
- (e) $\alpha(x+y) = \alpha x + \alpha y$
- (f) $(\alpha + \beta)x = \alpha x + \beta x$
- (g) $(\alpha\beta)x = \alpha(\beta x)$
- (h) $\mathbf{1}x = x$ for any x

Linear combinations

> Very important concept ...

A linear combination of m vectors is a vector of the form:

 $x=lpha_1x_1+lpha_2x_2+\dots+lpha_mx_m$

where $\alpha_1, \alpha_2, \cdots, \alpha_m$, are scalars and x_1, x_2, \cdots, x_m , are vectors in \mathbb{R}^n .

> The scalars $\alpha_1, \alpha_2, \cdots, \alpha_m$ are called the weights of the linear combination

5-7

> They can be any real numbers, including zero

Linear combinations

Example: Linear combinations of vectors in \mathbb{R}^3 :

$$u = 2\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + 2\begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}; \quad w = 2\begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix} - \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} + \begin{bmatrix} 1\\ 3\\ 1 \end{bmatrix}$$

And we have:
$$u = \begin{bmatrix} 2\\ 0\\ 4 \end{bmatrix}; \quad w = \begin{bmatrix} ?\\ ?\\ ? \end{bmatrix}$$

5-6

Note: for w the second weight is -1 and the third is +1.

5-7

Text: 1.3 - Vectors

Text: 1.3 - Vectors

Text: 1.3 - Vectors

Text: 1.3 – Vectors

The linear span of a set of vectors

Definition: If v_1, \cdots, v_p are in \mathbb{R}^n , then the set of all linear combinations of v_1, \cdots, v_p is denoted by $\operatorname{span}\{v_1, \cdots, v_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by v_1, \cdots, v_p . That is, $\operatorname{span}\{v_1,\cdots,v_p\}$ is the collection of all vectors that can be written in the form $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_p v_p$ with $\alpha_1, \alpha_2, \cdots, \alpha_p$ scalars.

Mhat is span
$$\{u\}$$
 in \mathbb{R}^2 where $u = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$?
Mhat is span $\{v\}$ in \mathbb{R}^2 where $v = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Multiply Span{u, v} in \mathbb{R}^2 with u, v given above?

Geometric representation of \mathbb{R}^2 and \mathbb{R}^3

Consider a rectangular coordinate system in the

 $x = \begin{bmatrix} a \\ b \end{bmatrix}$

The illustration

5-9

(-1,-1)

 \succ x_1 in the horizontal direction, x_2 in vertical direction

5-12

> Each point in the plane is determined by an ordered pair of numbers, so we identify a geometric point (a, b) with the column a b vector

5-11

 \succ We may regard \mathbb{R}^2 as the set of all points in the plane

Text: 1.3 - Vectors

(a,b)

Text: 1.3 - Vectors

plane.

shows the vector

with a = 4, b = 2.

5-15

5-16

5-19

5-20

Q: Why do we care about linear independence?

A: When expressing a vector x as a linear combination of a system $\{v_1, \cdots, v_p\}$ that is linearly dependent, then we can find a smaller system in which we can express x

A dependent system is 'redundant'

📧 Let
$$v_1 = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 . Is $\{v_1\}$ linearly independent? [here: $p=1$]

A system consisting of a nonzero vector [at least one nonzero entry] is always linearly independent: True - False?

Are the following systems linearly independent:

 $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} -10\\0 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix} \right\}?$

A system $\{u, v\}$ is linearly dependent when ____

$$\swarrow$$
 Let $v_1 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}; \quad v_2 = \begin{bmatrix} 4\\1\\5 \end{bmatrix}; \quad v_3 = \begin{bmatrix} -2\\3\\1 \end{bmatrix};$

(a) Determine if $\{v_1, v_2, v_3\}$ is linearly independent

(b) If possible find a linear dependence relation among v_1, v_2, v_3 . Solution: We must determine if the system:

	$\begin{bmatrix} 1 \end{bmatrix}$		$\begin{bmatrix} 4 \end{bmatrix}$		$\left[-2\right]$		$\begin{bmatrix} 0 \end{bmatrix}$	
x_1	1	$+ x_2$	1	$+ x_3$	3	=	0	
	2		5	$+ x_3$	1		0	

has a nontrivial solution (Trivial solution: $x_1 = x_2 = x_3 = 0$)

5-21	5-22		
Augmented syst: Echelon 1st step Echelon 2nd step $1 4 - 2 0$ $1 4 - 2 0$ $1 4 - 2 0$ $1 1 3 0$ $0 - 3 5 0$ $0 - 3 5 0$ $2 5 1 0$ $0 - 3 5 0$ $0 0 0 0$ This system is equivalent to original one. Variable x_3 is free.	Note: Text uses the reduced echelon form instead of back-solving [Result is clearly the same. Both solutions are OK] With the reduced row echelon form $ \begin{bmatrix} 1 & 0 & 14/3 & 0 \\ 0 & 1 & -5/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $		
Select $x_3 = 3$ (to avoid fractions) and back-solve for x_2 ($x_2 = 5$), and x_1 , ($x_1 = -14$)	► $x_1 = -(14/3)x_3;$ $x_2 = (5/3)x_3$		
Conclusion: there is a nontrivial solution	\blacktriangleright select $x_3=3$ then $x_2=5, x_1=14$		
NOT independent	\blacktriangleright Recall: x_1, x_2 are basic variables, and x_3 is free		
(b) Linear dependence relation: From above,			
$-14v_1 + 5v_2 + v_3 = 0 \\$			

5-24