The product $A x$

Definition: If \boldsymbol{A} is an $\boldsymbol{m} \times n$ matrix, with columns a_{1}, \ldots, a_{n}, and if \boldsymbol{x} is in $\mathbb{R}^{\boldsymbol{n}}$, then the product of \boldsymbol{A} and \boldsymbol{x}, denoted by $\boldsymbol{A} \boldsymbol{x}$ is the linear combination of the columns of \boldsymbol{A} using the corresponding entries in \boldsymbol{x} as weights; that is,

$$
A x=\left[a_{1}, a_{2}, \cdots, a_{n}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} a_{1}+x_{2} a_{2}+\cdots x_{n} a_{n}
$$

$>\boldsymbol{A} \boldsymbol{x}$ is defined only if the number of columns of \boldsymbol{A} equals the number of entries in \boldsymbol{x}

Example:

Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 0 & -2 & 3\end{array}\right]$ and $x=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$ Then:

$$
A x=2 \times\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]-\left[\begin{array}{c}
-1 \\
0 \\
-2
\end{array}\right]+3 \times\left[\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
0 \\
11
\end{array}\right]
$$

$>\boldsymbol{A x}$ is the Matrix-by-vector product of \boldsymbol{A} by \boldsymbol{x}
> 'matvec'What is the cost (operation count) of a 'matvec'?

Properties of the matrix-vector product

Theorem: If \boldsymbol{A} is an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^{n}, and $\boldsymbol{\alpha}$ is a scalar, then

1. $\boldsymbol{A}(u+v)=A u+A v$;
2. $A(\alpha u)=\alpha(A u)$Prove this result using only the definition (columns)Prove that for any vectors $\boldsymbol{u}, \boldsymbol{v}$ in \mathbb{R}^{n} and any scalars $\boldsymbol{\alpha}, \boldsymbol{\beta}$ we have

$$
A(\alpha u+\beta v)=\alpha A u+\beta A v
$$

Row-wise matrix-vector product

$>$ (in the form of an exercise)
$>$ Suppose you have an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A} and a vector \boldsymbol{x} of size \boldsymbol{n}, show how you can compute an entry of the result $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$, without computing the others. Use the following example.

Example:

Let $\boldsymbol{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 0 & -2 & 3\end{array}\right]$ and $\boldsymbol{x}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$. Let $\boldsymbol{y}=\boldsymbol{A x}$How would you compute \boldsymbol{y}_{2} (only)General rule or process?
勾 Matlab code?
$\boldsymbol{A x}=\boldsymbol{b}$ is called a matrix equation.
! Used in textbook. Better terminology: "Linear system in matrix form"
> \boldsymbol{A} is the coefficient matrix, \boldsymbol{b} is the right-hand side
> So we have 3 different ways of writing a linear system

1. As a set of equations involving x_{1}, \ldots, x_{n}
2. In an augmented matrix form
3. In the form of the matrix equation $\boldsymbol{A x}=\boldsymbol{b}$
> Important: these are just 3 different ways to look at the same equations. Nothing new. Only the notation is different.

The matrix equation $A x=b$

> We can now write a system of linear equations as a vector equation involving a linear combination of vectors.
$>$ For example, the $\begin{array}{rr}x_{1}+2 x_{2} & -x_{3}=4 \\ -5 x_{2}+3 x_{3}=1\end{array}$
system is equivalent to

$$
x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
2 \\
-5
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

> The linear combination on the left-hand side is a matrixvector product $\boldsymbol{A x}$ with:

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3
\end{array}\right], x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$>$ So: Can write above system as $\boldsymbol{A x}=\boldsymbol{b}$ with $\boldsymbol{b}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$

${ }^{6-6}$

Existence of a solution

$>$ The equation $\boldsymbol{A x}=\boldsymbol{b}$ has a solution if and only if \boldsymbol{b} can be written as a linear combination of the columns of \boldsymbol{A}

Theorem: Let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix. Then the following four

 statements are all mathematically equivalent.1. For each \boldsymbol{b} in \mathbb{R}^{m}, the equation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a solution.
2. Each \boldsymbol{b} in \mathbb{R}^{m} is a linear combination of the columns of \boldsymbol{A}.
3. The columns of \boldsymbol{A} span \mathbb{R}^{m}
4. \boldsymbol{A} has a pivot position in every row.
\qquad

Proof

First: 1, 2, 3 are mathematically equivalent. They just restate the same fact which is represented by statement 2.

- So, it suffices to show (for an arbitrary matrix \boldsymbol{A}) that (1) is true iff (4) is true, i.e., that (1) and (4) are either both true or false.
$>$ Given \boldsymbol{b} in \mathbb{R}^{m}, we can row reduce the augmented matrix $[\boldsymbol{A} \mid \boldsymbol{b}]$ to reduced row echelon form $[\boldsymbol{U} \mid d]$.
$>$ Note that \boldsymbol{U} is the rref of \boldsymbol{A}.
> If statement (4) is true, then each row of \boldsymbol{U} contains a pivot position, and so d cannot be a pivot column.
$>$ So $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a solution for any \boldsymbol{b}, and (1) is true.

If (4) is false, then the last row of \boldsymbol{U} is all zeros.
$>$ Let d be any vector with a 1 in its last entry. Then $[\boldsymbol{U} \mid \boldsymbol{d}]$ represents an inconsistent system.
$>$ Since row operations are reversible, $[\boldsymbol{U} \mid \boldsymbol{d}]$ can be transformed back into the form $[\boldsymbol{A} \mid \boldsymbol{b}]$ for a certain \boldsymbol{b}.
$>$ The new system $\boldsymbol{A x}=\boldsymbol{b}$ is also inconsistent, and (1) is false.

6-10

Application: Markov Chains

Example: The annual population movement between four cities with an initial population of 1 M each, follows the pattern shown in the figure: each number shows the fraction of the current population of city \boldsymbol{X} moving to city \boldsymbol{Y}. Migrations $\boldsymbol{A} \leftrightarrow$ \boldsymbol{C} and $\boldsymbol{B} \leftrightarrow \boldsymbol{D}$ are negligible.

Is there an equilibrium reached?

- If so what will be the population of each city after a very long time?

Let $\boldsymbol{x}^{(t)}=$ population distribution among cities at year t [starting at $t=0]$ - no pop. growth is assumed.Express one step of the process as a matrixvector product:

$$
\boldsymbol{x}^{(t+1)}=A \boldsymbol{x}^{(t)}
$$

$$
\boldsymbol{x}^{(t)}=\left[\begin{array}{c}
x_{A}^{(t)} \\
x_{B}^{(t)} \\
x_{(t)}^{(t)} \\
x_{D}^{(t)}
\end{array}\right]
$$

What is \boldsymbol{A} ? What distinct properties does it have?Do one step of the process by hand."Iterate" a few steps with matlab (40-50 steps)At the limit $\boldsymbol{A x}=\boldsymbol{x}$, so \boldsymbol{x} is the solution of a 'homogeneous' linear system. Find all possible solutions of this system. Among these which one is relevant?Compare with the solution obtained by "iteration"
\qquad

Application: Leontief Model [sec. 1.6 of text]

- Equilibrium model of the economy
> Suppose we have 3 industries only [reality: hundreds]:
\square
coal
electric
steel
> Each sector consumes output from the other two (+itself) and produces output that is in turn consumed by the others.

Distribution of Output from:			
Coal	Elec.	Steel	
.0	.4	.6	Coal
.6	.1	.2	Elec.
.4	.5	.2	Steel
1	1	1	Total

Application: Google's Page rank

Note
Read this to prepare for HW2!
> Idea is to put order into the web by ranking pages by their importance..
> Install the google-toolbar on your laptop or computer

> http://toolbar.google.com/
> Tells you how important a page is...
> Google uses this for searches..
> Updated regularly..
> Still a lot of mystery in what is in it..

Page-Rank - definitions

> Build a 'Hyperlink' matrix \boldsymbol{H} defined as follows
"every entry $\boldsymbol{h}_{i j}$ in column \boldsymbol{j} is zero except when \boldsymbol{i} is one of the links from \boldsymbol{j} to i in which case $h_{i j}=1 / k_{j}$ where $\boldsymbol{k}_{j}=$ number of links from (j)"
$>$ Defines a (possibly huge) Hyperlink matrix \boldsymbol{H}
$h_{i j}=\left\{\begin{array}{l}\frac{1}{k_{j}} \text { if } j \text { points to } i \\ 0 \text { otherwise }\end{array}\right.$
$\delta=1$ (called undamped)
$0<\delta<1$ (called damped)
$>\boldsymbol{\delta}$ is a called a 'damping' parameter close to 1 - e.g. 0.85

General case: $0<\delta<1$ Assumption: token has

- $\delta / \boldsymbol{k}_{j}$ chance of jumping to one of the \boldsymbol{k}_{j} links from \boldsymbol{j}
- $1-\delta$ chance to go to a random page

We wish to say next jump land in node i with a 'probability' of:

$>$ Let $\rho_{1}, \rho_{2}, \cdots, \rho_{n}$ be n measures of importance for nodes $1,2, \cdots, n$. [think of them as 'votes' or likelihoods of being visited]
$>$ Google page-rank defines the ρ_{i} 's by the following equation:

$$
\rho_{i}=1-\delta+\delta\left[\frac{\rho_{1}}{k_{1}}+\frac{\rho_{2}}{k_{2}}+\cdots+\frac{\rho_{n}}{k_{n}}\right]
$$

$>\rho_{i}$ gets assigned a value that depends on the other ρ_{j} 's
\qquad Text: 1.5 - pagerank

Example: Here the 4th col-

 umn of \boldsymbol{H} consists of zeros except$$
\begin{aligned}
& h_{14}=1 / 5 ; h_{34}=1 / 5 ; \\
& h_{64}=1 / 5 ; h_{94}=1 / 5 \\
& h_{54}=1 / 5 ;
\end{aligned}
$$

Simple case: $\delta=1$

If token is at node \boldsymbol{j} (with probability 1) at some stage, in the next stage it will jump to node \boldsymbol{i} with probability $\boldsymbol{h}_{\boldsymbol{i j}}$.

Case $\delta==1$ will be very similar to the other Markov chain examples [population movement]
> Solved in exactly the same way.

- Issue: token can get stuck if a node has no outgoing links.
\qquad
6-18Why is the above definition sensible?Let \boldsymbol{e} be the vector of all ones (length \boldsymbol{n}) and \boldsymbol{v} the vector with components $\rho_{1}, \rho_{2}, \cdots, \rho_{n}$.

Show that the above equation is equivalent to

$$
v=(1-\delta) e+\delta H v
$$How would you solve the system?Can show: Sum of all PageRanks $==\mathrm{n}: \quad \sum \rho_{i}=n$What is the 4×4 matrix \boldsymbol{H} for the following case? [4 Nodes]

A points to B and $D ;$	B points to A, C, and $D ;$
C points to A and $B ;$	D points to $C ;$

Also: Determine the $\rho_{i}{ }^{\prime}$'s for this case when $\delta=0.9$ (Matlab)
\qquad Text: 1.5 - pageran

Solution:

	A	B	C	D
A	0	$1 / 3$	$1 / 2$	0
B	$1 / 2$	0	$1 / 2$	0
C	0	$1 / 3$	0	1
D	$1 / 2$	$1 / 3$	0	0

> Column- sums of \boldsymbol{H} are $=1$.
If $\delta=.9$ then solving the linear system yields $v=\left[\begin{array}{l}0.94144 \\ 1.05007 \\ 1.16982 \\ 0.83867\end{array}\right]$
\qquad

The Google PageRank algorithm

> As one can imagine \boldsymbol{H} can be huge so solving the linear system by GE is not practical.

Alternative: following iterative algorithm

```
Algorithm (PageRank)
1. Select initial vector \(\boldsymbol{v}(\boldsymbol{v} \geq 0)\)
2. For \(\mathrm{i}=1\) :maxitr
3. \(\quad v:=(1-\delta) e+\delta H v\)
4. end
```Do a few steps of this algorithm for previous example
```

