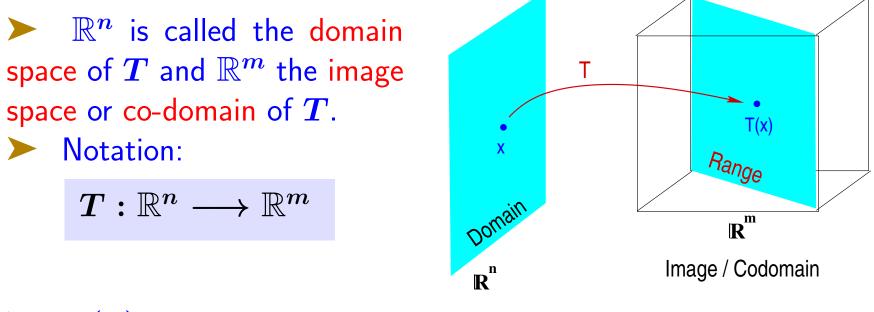
## LINEAR MAPPINGS [1.8]

## Introduction to linear mappings [1.8]

A transformation or function or mapping from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a rule which assigns to every x in  $\mathbb{R}^n$  a vector T(x) in  $\mathbb{R}^m$ .



 $\blacktriangleright T(x)$  is the image of x under T

**Example:** Take the mapping from  $\mathbb{R}^2$  to  $\mathbb{R}^3$ :

$$egin{array}{rll} T: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \ & x = egin{pmatrix} x_1 \ x_2 \end{pmatrix} & \longrightarrow & T(x) = egin{pmatrix} x_1 + x_2 \ x_1 x_2 \ x_1^2 + x_2^2 \end{pmatrix} \end{array}$$

**Example:**Another mapping from  $\mathbb{R}^2$  to  $\mathbb{R}^3$ : $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$  $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longrightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_1 + 5x_2 \end{pmatrix}$ 

Mhat is the main difference between these 2 examples?

# **Definition** A mapping T is linear if:

(i) T(u+v) = T(u) + T(v) for u, v in the domain of T(ii)  $T(\alpha u) = \alpha T(u)$  for all  $\alpha \in \mathbb{R}$ , all u in the domain of T

The mapping of the second example given above is linear - but not for the first one.

> If a mapping is linear then T(0) = 0. (Why?)

**Observation:** A mapping is linear if and only if

$$T(lpha u+eta v)=lpha T(u)+eta T(v)$$

for all scalars  $\alpha, \beta$  and all u, v in the domain of T.

Prove this

Consequence:

 $T(lpha_1u_1+lpha_2u_2+\dots+lpha_pu_p) = lpha_1T(u_1)+lpha_2T(u_2)+ \dots+lpha_pT(u_p)$ 

Text:1.8-9 – Mappings

> Given an m imes n matrix A, consider the special mapping:

$$egin{array}{lll} T: & \mathbb{R}^n \longrightarrow \mathbb{R}^m \ & x & \longrightarrow y = Ax \end{array}$$

▶ Domain == ??; Image space == ??

From what we saw earlier ['Properties of the matrix-vector product'] such mappings are linear

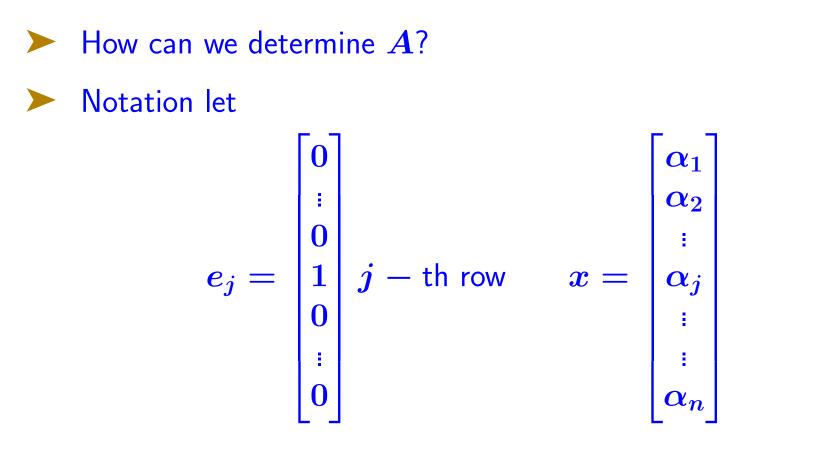
As it turns out:

7-6

If T is linear, there exists a matrix A such that T(x) = Ax for all x in  $\mathbb{R}^n$ 

In plain English: 'A linear mapping can be represented by a matvec'

 $\succ$  A is the representation of T.



- Write a vector x in  $\mathbb{R}^n$  as  $x = lpha_1 e_1 + \dots + lpha_n e_n$ .
- Then note that  $T(x) = lpha_1 T(e_1) + \dots + lpha_n T(e_n)$

7-7

• Therefore the columns of the matrix representation of T must be the vectors  $T(e_j)$  for  $j=1,\cdots,n$ 

Let A be a square matrix. Is the mapping  $x \to x + Ax$  linear? If so find the matrix associated with it.

Some questions for the mapping x o Ax + lpha x - where lpha is a scalar.

Express the following mapping from R<sup>3</sup>
  $y_1 = 2x_1 - x_2 + 1$  to R<sup>2</sup> in matrix/vector form:
  $y_2 = x_2 - x_3 - 2$  Is this a linear mapping?

Read Section 1.9 and explore the notions of onto mappings ('surjective') and one-to-one mappings ('injective') in the text. You must at least know the definitions.

A mapping is onto if and only if ....

7-8

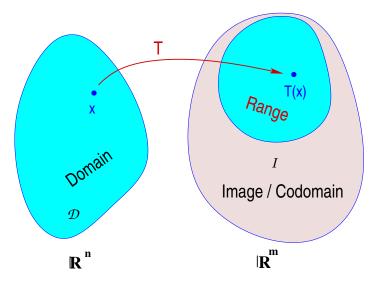
🔼 A mapping is one-to-one if and only if ....

### Onto and one-to-one mappings

Let T a mapping – not necessarily linear for now – from a domain set  $\mathcal{D}$ (subset of  $\mathbb{R}^n$ ) into an image set  $\mathcal{I}$ (subset of  $\mathbb{R}^m$ )

The range of T is the set of all possible vectors of the form T(x) for  $x \in \mathcal{D}$ .

7-9

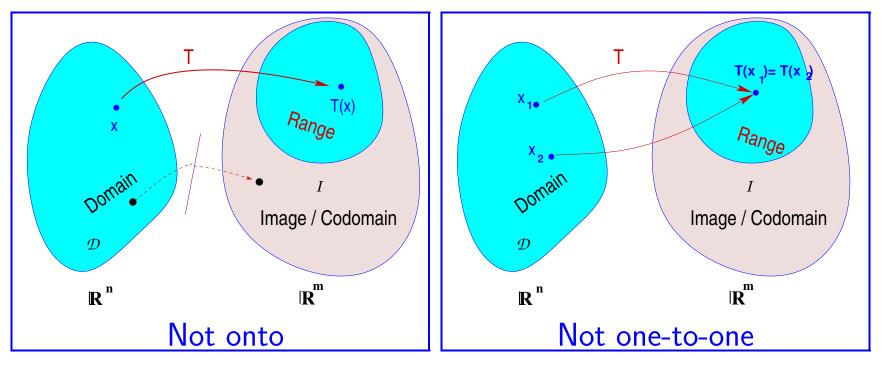


We say that T is onto if for every y in  $\mathcal{I}$  there is at least one x in  $\mathcal{D}$  such that y = T(x).

 $\blacktriangleright$  In other words T is onto if the range of T equals all of  $\mathcal I$ 

We say that T is one-to-one if for every y in  $\mathcal{I}$  there is at most one x in  $\mathcal{D}$  such that y = T(x).

 $\blacktriangleright$  In other words if  $T(u_1) = T(u_2)$  then we must have  $u_1 = u_2$ 



Now consider linear mappings: let T represented by a matrix A
 Now: Domain D is all of R<sup>n</sup> and Image set I is all of R<sup>m</sup>.

So: A is one-to-one when every y in  $\mathbb{R}^m$  is 'reached' by A, i.e., if every y in  $\mathbb{R}^m$  can be written as y = Ax for some  $x \in \mathbb{R}^n$ . Since Ax is a linear combination of the columns of A, this means that:

old A is onto iff the span of the columns of old A equals  $\mathbb{R}^m$ 

Show that A is one-to-one iff the columns of A are linearly independent.

 $\checkmark$  Find a  $3 \times 3$  example of a mapping that is not onto

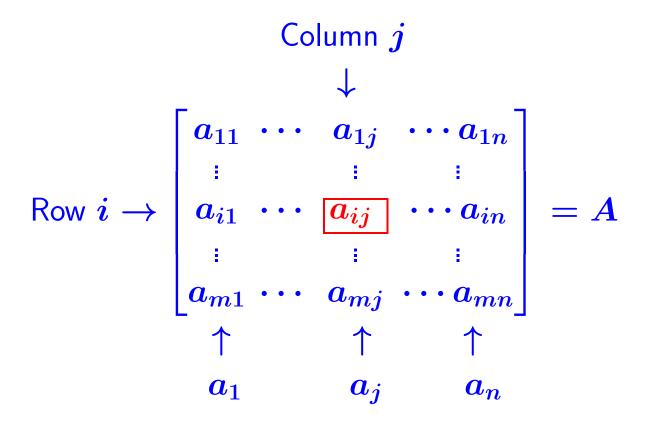
 $\checkmark$  Finf a  $3 \times 3$  example of a mapping that is not one-to-one.

## MATRIX OPERATIONS [2.1]

## Matrix operations

7-13

If A is an  $m \times n$  matrix (m rows and n columns) –then the scalar entry in the *i*th row and *j*th column of A is denoted by  $a_{ij}$  and is called the (i, j)-entry of A.



Text: 2.1 – Matrix

 $\blacktriangleright$  The number  $a_{ij}$  is the *i*th entry (from the top) of the *j*th column

Each column of A is a list of m real numbers, which identifies a vector in  $\mathbb{R}^m$  called a column vector

> The columns are denoted by  $a_1, ..., a_n$ , and the matrix A is written as  $A = [a_1, a_2, \cdots, a_n]$ 

The diagonal entries in an  $m \times n$  matrix A are  $a_{11}, a_{22}, a_{33}$ , ..., and they form the main diagonal of A.

A diagonal matrix is a matrix whose nondiagonal entries are zero

An important example is the  $n \times n$  identity matrix,  $I_n$  (each diagonal entry equals one) - Example:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Another important matrix is the zero matrix (all entries are 0). It is denoted by O.

**Equality of two matrices:** Two matrices A and B are equal if they have the same size (they are both  $m \times n$ ) and if their entries are all the same.

$$a_{ij}=b_{ij}$$
 for all  $i=1,\cdots,m, \ j=1,\cdots,n$ 

Sum of two matrices: If A and B are  $m \times n$  matrices, then their sum A + B is the  $m \times n$  matrix whose entries are the sums of the corresponding entries in A and B.

If we call C this sum we can write:

$$c_{ij} = a_{ij} + b_{ij}$$
 for all  $i = 1, \cdots, m, \quad j = 1, \cdots, n$ 

$$\begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 1 & -3 \\ 0 & 2 & -2 \end{bmatrix} = ??; \qquad \begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -3 \\ 2 & -2 \end{bmatrix} = ??$$
Text: 2.1 – Matrix

scalar multiple of a matrix If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose entries are r times the corresponding entries in A.

$$(lpha A)_{ij} = lpha a_{ij}$$
 for all  $i=1,\cdots,m, \quad j=1,\cdots,n$ 

**Theorem** Let A, B, and C be matrices of the same size, and let  $\alpha$  and  $\beta$  be scalars. Then

- A + B = B + A
- (A+B) + C = A + (B+C)
- A + 0 = A

7-17

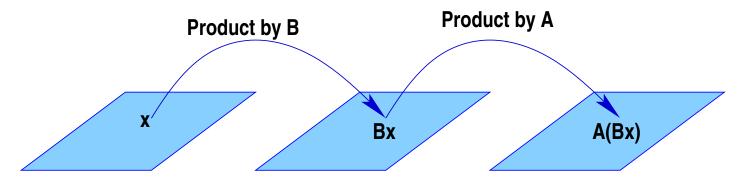
- $\alpha(A+B) = \alpha A + \alpha B$
- $(\alpha + \beta)A = \alpha A + \beta A$
- $\alpha(\beta A) = (\alpha\beta)A$

## Prove all of the above equalities

## Matrix Multiplication

> When a matrix B multiplies a vector x, it transforms x into the vector Bx.

If this vector is then multiplied in turn by a matrix A, the resulting vector is A(Bx).

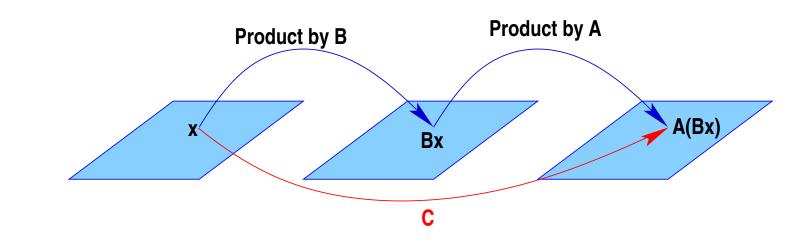


Thus A(Bx) is produced from x by a composition of mappingsthe linear transformations induced by B and A.

Note:  $x \to yA(Bx)$  is a linear mapping (prove this).

**Goal:** to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$A(Bx) = Cx$$



 $\blacktriangleright$  Assume A is m imes n, B is n imes p , and x is in  $\mathbb{R}^p$ 

•

7-19

> Denote the columns of B by  $b_1, \cdots, b_p$  and the entries in x by  $x_1, \cdots, x_p$ . Then:

$$Bx = x_1b_1 + \dots + x_pb_p$$

Text: 2.1 – Matrix

By the linearity of multiplication by A:  $A(Bx) = A(x_1b_1) + \dots + A(x_pb_p)$   $= x_1Ab_1 + \dots + x_pAb_p$ 

The vector A(Bx) is a linear combination of  $Ab_1, \cdots, Ab_p$ , using the entries in x as weights.

In matrix notation, this linear combination is written as

 $A(Bx) = [Ab_1, Ab_2, \cdots Ab_p].x$ 

> Thus, multiplication by  $[Ab_1, Ab_2, \cdots, Ab_p]$  transforms x into A(Bx).

 $\blacktriangleright$  Therefore the desired matrix C is the matrix

$$C = [Ab_1, Ab_2, \cdots, Ab_p]$$

 $\blacktriangleright$  Denoted by AB

7-20

Text: 2.1 – Matrix

**Definition:** If A is an  $m \times n$  matrix, and if B is an  $n \times p$  matrix with columns  $b_1, \dots, b_p$ , then the product AB is the matrix whose p columns are  $Ab_1, \dots, Ab_p$ . That is:

$$AB = A[b_1, b_2, \cdots, b_p] = [Ab_1, Ab_2, \cdots, Ab_p]$$



7 - 21

Multiplication of matrices corresponds to composition of linear transformations.

 $\checkmark$  Operation count: How many operations are required to perform product AB?

 $\checkmark$  Compute AB when

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 3 & -2 \end{bmatrix}$$

 $\checkmark$  Compute AB when

7-22

$$A = \begin{bmatrix} 2 & -1 & 2 & 0 \\ 1 & -2 & 1 & 0 \\ 3 & -2 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & -2 & 2 \\ 2 & 1 & -2 \\ -1 & 3 & 2 \end{bmatrix}$$

 $\checkmark$  Can you compute AB when

$$A = egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix} \quad B = egin{bmatrix} 0 & 2 \ 1 & 3 \ -1 & 4 \end{bmatrix}?$$

Text: 2.1 - Matrix

## Row-wise matrix product

7-23

> Recall what we did with matrix-vector product to compute a single entry of the vector Ax

 $\blacktriangleright$  Can we do the same thing here? i.e., How can we compute the entry  $c_{ij}$  of the product AB without computing entire columns?

 $\checkmark$  Do this to compute entry (2,2) in the first example above.

Operation counts: Is more or less expensive to perform the matrixvector product row-wise instead of column-wise?

## Properties of matrix multiplication

**Theorem** Let A be an  $m \times n$  matrix, and let B and C have sizes for which the indicated sums and products are defined.

- A(BC) = (AB)C (associative law of multiplication)
- A(B+C) = AB + AC (left distributive law)
- (B+C)A = BA + CA (right distributive law)
- $\alpha(AB) = (\alpha A)B = A(\alpha B)$  for any scalar  $\alpha$
- $I_m A = A I_n = A$  (product with identity)
- If AB = AC then B = C ('simplification') : True-False?
- If AB = 0 then either A = 0 or B = 0: True or False?
- AB = BA : True or false??

#### Square matrices. Matrix powers

7-25

Important particular case when n = m - so matrix is n × n
In this case if x is in R<sup>n</sup> then y = Ax is also in R<sup>n</sup>
AA is also a square n × n matrix and will be denoted by A<sup>2</sup>
More generally, the matrix A<sup>k</sup> is the matrix which is the product of k copies of A:

$$A^1 = A;$$
  $A^2 = AA;$   $\cdots$   $A^k = \underbrace{A \cdots A}_{k \text{ times}}$ 

For consistency define A<sup>0</sup> to be the identity: A<sup>0</sup> = I<sub>n</sub>,
 A<sup>l</sup> × A<sup>k</sup> = A<sup>l+k</sup> – Also true when k or l is zero.

Text: 2.1 – Matrix

## Transpose of a matrix

Given an  $m \times n$  matrix A, the transpose of A is the  $n \times m$  matrix, denoted by  $A^T$ , whose columns are formed from the corresponding rows of A.

**Theorem** : Let A and B denote matrices whose sizes are appropriate for the following sums and products.

• 
$$(A^T)^T = A$$
  
•  $(A+B)^T = A^T + B^T$ 

• 
$$(lpha A)^T = lpha A^T$$
 for any scalar  $lpha$ 

• 
$$(AB)^T = B^T A^T$$

## More on matrix produts

 $\blacktriangleright$  Recall: Product of the matrix A by the vector x:

$$egin{array}{cccccccc} y & A & x \ eta_1 \ ectcolorem eta_2 \ ectcolorem eta_1 \ ectcolorem eta_1 \ ectcolorem eta_2 \ ectcolorem eta_2 \ ectcolorem eta_1 \ ectcolorem eta_2 \ ectc$$

 $= lpha_1 a_1 + lpha_2 a_2 + \dots + lpha_n a_n$ 

• x, y are vectors; y is the result of A imes x.

•  $a_1, a_2, ..., a_n$  are the columns of A

•  $lpha_1, lpha_2, ..., lpha_n$  are the components of x [scalars]

•  $\alpha_1 a_1$  is the first column of A multiplied by the scalar  $\alpha_1$  which is the first component of x.

•  $\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$  is a linear combination of  $a_1, a_2, \cdots, a_n$ with weights  $\alpha_1, \alpha_2, ..., \alpha_n$ .

This is the 'column-wise' form of the 'matvec'

**Example:** 
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
  $x = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$   $y = ?$   
Result:

$$y=-2 imesegin{bmatrix}1\0\end{bmatrix}+1 imesegin{bmatrix}2\-1\end{bmatrix}-3 imesegin{bmatrix}-1\3\end{bmatrix}=egin{bmatrix}3\-10\end{bmatrix}$$



 $\succ$  Can get *i*-th component of the result *y* without the others:

$$eta_i = lpha_1 a_{i1} + lpha_2 a_{i2} + \dots + lpha_n a_{in}$$

**Example:** In the above example extract  $\beta_2$ 

$$eta_2 = (-2) imes 0 + (1) imes (-1) + (-3) imes (3) = -10$$

- $\blacktriangleright$  Can compute  $eta_1,eta_2,\cdots,eta_m$  in this way.
- This is the 'row-wise' form of the 'matvec'

## Matrix-Matrix product

7 - 30

> When A is  $m \times n$ , B is  $n \times p$ , the product AB of the matrices A and B is the  $m \times p$  matrix defined as

$$AB = [Ab_1, Ab_2, \cdots, Ab_p]$$

Each  $Ab_j$  is a matrix-vector product: the product of A by the j-th column of B. Matrix AB has dimension m imes p

Can use what we know on matvecs to perform the product

**1**. Column form – In words: "The j-th column of AB is a linear combination of the columns of A, with weights  $b_{1j}, b_{2j}, \dots, b_{nj}$ " (entries of j-th col. of B)

Text: 2.1 – Matrix2

**Example:** 
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} -2 & 1 \\ 1 & -2 \\ -3 & 2 \end{bmatrix} \quad AB = ?$$

Result:  $B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix}$  $= \begin{bmatrix} 3 & -6 \\ -10 & 8 \end{bmatrix}$ 

 ▶ First column has been computed before: it is equal to: (-2)\*(col. 1 of A) + (1)\*(col. 2 of A) + (-3)\*(col. 3 of A)
 ▶ Second column is equal to: (1)\*(col. 1 of A) + (-2)\*(col. 2 of A) + (2)\*(col. 3 of A)

Text: 2.1 – Matrix2

2. If we call C the matrix C = AB what is  $c_{ij}$ ? From above:  $c_{ii} = a_{i1}b_{1i} + a_{i2}b_{2i} + \dots + a_{ik}b_{ki} + \dots + a_{in}b_{nj}$ 

$$c_{ij} = a_{i1}o_{1j} + a_{i2}o_{2j} + \cdots + a_{ik}o_{kj} + \cdots + a_{in}o_n$$

Fix j and run i 
$$\longrightarrow$$
 column-wise form just seen
 3. Fix i and run j  $\longrightarrow$  row-wise form
 Example: Get second row of AB in previous example.
  $c_{2j} = a_{21}b_{1j} + a_{22}b_{2j} + a_{23}b_{3j}, \quad j = 1, 2$ 

• Can be read as :  $c_{2:} = a_{21}b_{1:} + a_{22}b_{2:} + a_{23}b_{3:}$ , or in words: row2 of C =  $a_{21}$  (row1 of B) +  $a_{22}$  (row2 of B) +  $a_{23}$  (row3 of B) = 0 (row1 of B) + (-1) (row2 of B) + (3) (row3 of B) =  $[-10 \ 8]$ 

Text: 2.1 – Matrix2