Introduction to linear mappings [1.8]

$>$ A transformation or function or mapping from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule which assigns to every \boldsymbol{x} in \mathbb{R}^{n} a vector $\boldsymbol{T}(\boldsymbol{x})$ in \mathbb{R}^{m}

LINEAR MAPPINGS [1.8]

$>\mathbb{R}^{n}$ is called the domain space of T and \mathbb{R}^{m} the image space or co-domain of \boldsymbol{T}.
$>$ Notation:

$$
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

$>\boldsymbol{T}(\boldsymbol{x})$ is the image of \boldsymbol{x} under \boldsymbol{T}

7-2

Definition A mapping \boldsymbol{T} is linear if:

(i) $T(u+v)=T(u)+T(v)$ for u, v in the domain of T
(ii) $T(\alpha u)=\alpha T(u)$ for all $\alpha \in \mathbb{R}$, all u in the domain of T

The mapping of the second example given above is linear - but not for the first one.
$>$ If a mapping is linear then $\boldsymbol{T}(0)=0$. (Why?)
Observation: A mapping is linear if and only if

$$
T(\alpha u+\beta v)=\alpha T(u)+\beta T(v)
$$

for all scalars $\alpha, \boldsymbol{\beta}$ and all $\boldsymbol{u}, \boldsymbol{v}$ in the domain of \boldsymbol{T}.Prove this
> Consequence:
$T\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{p} u_{p}\right)=\alpha_{1} T\left(u_{1}\right)+\alpha_{2} T\left(u_{2}\right)+$ $\cdots+\alpha_{p} T\left(u_{p}\right)$

How can we determine \boldsymbol{A} ?
> Notation let

$$
e_{j}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] j-\text { th row } \quad x=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{j} \\
\vdots \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

- Write a vector x in \mathbb{R}^{n} as $x=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}$.
- Then note that $T(x)=\alpha_{1} T\left(e_{1}\right)+\cdots+\alpha_{n} T\left(e_{n}\right)$
- Therefore the columns of the matrix representation of T must be the vectors $T\left(e_{j}\right)$ for $j=1, \cdots, n$

Given an $m \times n$ matrix \boldsymbol{A}, consider the special mapping:

$$
\begin{aligned}
& T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
& x
\end{aligned} \longrightarrow y=A x=1 .
$$Domain $==$??; Image space $==$??From what we saw earlier ['Properties of the matrix-vector product'] such mappings are linear

> As it turns out:
If \boldsymbol{T} is linear, there exists a matrix \boldsymbol{A} such that $\boldsymbol{T}(\boldsymbol{x})=\boldsymbol{A x}$ for all \boldsymbol{x} in \mathbb{R}^{n}
> In plain English: 'A linear mapping can be represented by a matvec'
$>\boldsymbol{A}$ is the representation of \boldsymbol{T}.
$\xrightarrow{7-6}$ Text:1.8-9 - Mappings
${ }^{7-6}$

Let \boldsymbol{A} be a square matrix. Is the mapping $x \rightarrow x+\boldsymbol{A} \boldsymbol{x}$ linear? If so find the matrix associated with it.Same questions for the mapping $x \rightarrow \boldsymbol{A x}+\boldsymbol{\alpha} \boldsymbol{x}$ - where α is a scalar.Express the following mapping from $\mathbb{R}^{3} \mid y_{1}=2 x_{1}-x_{2}+1$ to \mathbb{R}^{2} in matrix/vector form:

$$
y_{2}=x_{2}-x_{3} \quad-2
$$

$>$ Is this a linear mapping?Read Section 1.9 and explore the notions of onto mappings ('surjective') and one-to-one mappings ('injective') in the text. You must at least know the definitions.A mapping is onto if and only ifA mapping is one-to-one if and only if

Onto and one-to-one mappings

- Let \boldsymbol{T} a mapping - not necessarily linear for now - from a domain set \mathcal{D} (subset of \mathbb{R}^{n}) into an image set \mathcal{I} (subset of \mathbb{R}^{m})
> The range of \boldsymbol{T} is the set of all possible vectors of the form $\boldsymbol{T}(\boldsymbol{x})$ for $\boldsymbol{x} \in \mathcal{D}$.

$>$ We say that \boldsymbol{T} is onto if for every \boldsymbol{y} in $\boldsymbol{\mathcal { I }}$ there is at least one \boldsymbol{x} in \mathcal{D} such that $\boldsymbol{y}=\boldsymbol{T}(\boldsymbol{x})$.
> In other words \boldsymbol{T} is onto if the range of \boldsymbol{T} equals all of \mathcal{I}
$>$ We say that \boldsymbol{T} is one-to-one if for every \boldsymbol{y} in $\boldsymbol{\mathcal { I }}$ there is at most one \boldsymbol{x} in \mathcal{D} such that $\boldsymbol{y}=\boldsymbol{T}(\boldsymbol{x})$.
$>$ In other words if $\boldsymbol{T}\left(\boldsymbol{u}_{1}\right)=\boldsymbol{T}\left(\boldsymbol{u}_{2}\right)$ then we must have $\boldsymbol{u}_{1}=\boldsymbol{u}_{2}$
\qquad
7-9

Show that \boldsymbol{A} is one-to-one iff the columns of \boldsymbol{A} are linearly independent.Find a 3×3 example of a mapping that is not ontoFinf a 3×3 example of a mapping that is not one-to-one.

$>$ Now consider linear mappings: let \boldsymbol{T} represented by a matrix \boldsymbol{A}
$>$ Now: Domain \mathcal{D} is all of \mathbb{R}^{n} and Image set \mathcal{I} is all of \mathbb{R}^{m}.
$>$ So: \boldsymbol{A} is one-to-one when every \boldsymbol{y} in \mathbb{R}^{m} is 'reached' by \boldsymbol{A}, i.e., if every \boldsymbol{y} in \mathbb{R}^{m} can be written as $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ for some $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$. Since $\boldsymbol{A} \boldsymbol{x}$ is a linear combination of the columns of \boldsymbol{A}, this means that:
$>\boldsymbol{A}$ is onto iff the span of the columns of \boldsymbol{A} equals \mathbb{R}^{m}
\qquad
7-10

Matrix operations

$>$ If \boldsymbol{A} is an $\boldsymbol{m} \times n$ matrix (\boldsymbol{m} rows and n columns) -then the scalar entry in the i th row and j th column of A is denoted by $a_{i j}$ and is called the (i, j)-entry of \boldsymbol{A}.

Column j

\downarrow
Row $i \rightarrow\left[\begin{array}{ccccc}a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\ \vdots & & \vdots & \vdots \\ a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\ \vdots & & \vdots & \vdots \\ a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}\end{array}\right]=A$
$>$ The diagonal entries in an $m \times n$ matrix A are a_{11}, a_{22}, a_{33}, \ldots, and they form the main diagonal of \boldsymbol{A}.

- A diagonal matrix is a matrix whose nondiagonal entries are zero
$>$ An important example is the $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix, \boldsymbol{I}_{n} (each diagonal entry equals one) - Example:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

> Another important matrix is the zero matrix (all entries are 0). It is denoted by \boldsymbol{O}.
$>$ The number $\boldsymbol{a}_{i j}$ is the \boldsymbol{i} th entry (from the top) of the \boldsymbol{j} th column
$>$ Each column of \boldsymbol{A} is a list of \boldsymbol{m} real numbers, which identifies a vector in \mathbb{R}^{m} called a column vector
$>$ The columns are denoted by a_{1}, \ldots, a_{n}, and the matrix \boldsymbol{A} is written as $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$
\qquad
${ }^{7}-14$

Equality of two matrices: Two matrices \boldsymbol{A} and \boldsymbol{B} are equal if they have the same size (they are both $m \times n$) and if their entries are all the same.

$$
a_{i j}=b_{i j} \quad \text { for all } i=1, \cdots, m, \quad j=1, \cdots, n
$$

Sum of two matrices: If \boldsymbol{A} and \boldsymbol{B} are $\boldsymbol{m} \times \boldsymbol{n}$ matrices, then their sum $\boldsymbol{A}+\boldsymbol{B}$ is the $\boldsymbol{m} \times \boldsymbol{n}$ matrix whose entries are the sums of the corresponding entries in \boldsymbol{A} and \boldsymbol{B}.
> If we call C this sum we can write:

$$
c_{i j}=a_{i j}+b_{i j} \quad \text { for all } i=1, \cdots, m, \quad j=1, \cdots, n
$$

$\left[\begin{array}{lll}4 & 0 & 5 \\ 1 & 3 & 2\end{array}\right]+\left[\begin{array}{lll}3 & 1 & -3 \\ 0 & 2 & -2\end{array}\right]=? ? ; \quad\left[\begin{array}{lll}4 & 0 & 5 \\ 1 & 3 & 2\end{array}\right]+\left[\begin{array}{ll}1 & -3 \\ 2 & -2\end{array}\right]=? ?$
scalar multiple of a matrix If \boldsymbol{r} is a scalar and \boldsymbol{A} is a matrix, then the scalar multiple $\boldsymbol{r} \boldsymbol{A}$ is the matrix whose entries are \boldsymbol{r} times the corresponding entries in \boldsymbol{A}.

$$
(\alpha A)_{i j}=\alpha a_{i j} \quad \text { for all } i=1, \cdots, m, \quad j=1, \cdots, n
$$

Theorem Let $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} be matrices of the same size, and let $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ be scalars. Then

- $A+B=B+A$
- $(A+B)+C=A+(B+C)$
- $A+0=A$
- $\alpha(A+B)=\alpha A+\alpha B$
- $(\alpha+\beta) A=\alpha A+\beta A$
- $\alpha(\boldsymbol{\beta} A)=(\alpha \beta) A$Prove all of the above equalities

Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$
A(B x)=C \boldsymbol{x}
$$

$>$ Assume \boldsymbol{A} is $\boldsymbol{m} \times \boldsymbol{n}, \boldsymbol{B}$ is $\boldsymbol{n} \times \boldsymbol{p}$, and \boldsymbol{x} is in $\mathbb{R}^{\boldsymbol{p}}$

$>$ Denote the columns of \boldsymbol{B} by $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{\boldsymbol{p}}$ and the entries in \boldsymbol{x} by x_{1}, \cdots, x_{p}. Then:

$$
B x=x_{1} b_{1}+\cdots+x_{p} b_{p}
$$

Matrix Multiplication

$>$ When a matrix \boldsymbol{B} multiplies a vector \boldsymbol{x}, it transforms \boldsymbol{x} into the vector $\boldsymbol{B} \boldsymbol{x}$.
$>$ If this vector is then multiplied in turn by a matrix \boldsymbol{A}, the resulting vector is $\boldsymbol{A}(\boldsymbol{B x})$.

Thus $\boldsymbol{A}(\boldsymbol{B} \boldsymbol{x})$ is produced from \boldsymbol{x} by a composition of mappingsthe linear transformations induced by \boldsymbol{B} and \boldsymbol{A}.
$>$ Note: $\boldsymbol{x} \rightarrow \boldsymbol{y} \boldsymbol{A}(\boldsymbol{B} \boldsymbol{x})$ is a linear mapping (prove this).

7-18 Text: 2.1 - Matrix
7-18
$>B$ By the linearity of multiplication by \boldsymbol{A} :

$$
\begin{aligned}
A(B x) & =A\left(x_{1} b_{1}\right)+\cdots+A\left(x_{p} b_{p}\right) \\
& =x_{1} A b_{1}+\cdots+x_{p} A b_{p}
\end{aligned}
$$

$>$ The vector $\boldsymbol{A}(\boldsymbol{B x})$ is a linear combination of $A b_{1}, \cdots, A b_{p}$, using the entries in \boldsymbol{x} as weights.
$>$ In matrix notation, this linear combination is written as

$$
A(B x)=\left[A b_{1}, A b_{2}, \cdots A b_{p}\right] \cdot x
$$

$>$ Thus, multiplication by $\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]$ transforms x into $A(B x)$.
$>$ Therefore the desired matrix C is the matrix

$$
C=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

[^0]7-20 \qquad -20

Definition: If \boldsymbol{A} is an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, and if \boldsymbol{B} is an $\boldsymbol{n} \times \boldsymbol{p}$ matrix with columns b_{1}, \cdots, b_{p}, then the product $\boldsymbol{A B}$ is the matrix whose p columns are $A b_{1}, \cdots, A b_{p}$. That is:

$$
A B=A\left[b_{1}, b_{2}, \cdots, b_{p}\right]=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

> Important to remember that:

Multiplication of matrices corresponds to composition of linear

 transformations.Operation count: How many operations are required to perform product $A B$?
Row-wise matrix product

Recall what we did with matrix-vector product to compute a single entry of the vector $\boldsymbol{A x}$
> Can we do the same thing here? i.e., How can we compute the entry $c_{i j}$ of the product $\boldsymbol{A B}$ without computing entire columns?Do this to compute entry $(2,2)$ in the first example above.Operation counts: Is more or less expensive to perform the matrixvector product row-wise instead of column-wise?Compute $\boldsymbol{A B}$ when

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
0 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$Compute $\boldsymbol{A B}$ when

$$
A=\left[\begin{array}{llll}
2 & -1 & 2 & 0 \\
1 & -2 & 1 & 0 \\
3 & -2 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & -2 & 2 \\
2 & 1 & -2 \\
-1 & 3 & 2
\end{array}\right]
$$Can you compute $\boldsymbol{A B}$ when

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 2 \\
1 & 3 \\
-1 & 4
\end{array}\right] ?
$$

Properties of matrix multiplication

Theorem Let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, and let \boldsymbol{B} and \boldsymbol{C} have sizes for which the indicated sums and products are defined.

- $A(B C)=(A B) C$ (associative law of multiplication)
- $A(B+C)=A B+A C$ (left distributive law)
- $(\boldsymbol{B}+\boldsymbol{C}) \boldsymbol{A}=\boldsymbol{B} \boldsymbol{A}+\boldsymbol{C A}$ (right distributive law)
- $\alpha(A B)=(\alpha A) B=A(\alpha B)$ for any scalar α
- $I_{m} \boldsymbol{A}=\boldsymbol{A} I_{n}=\boldsymbol{A}$ (product with identity)If $\boldsymbol{A B}=\boldsymbol{A C}$ then $\boldsymbol{B}=\boldsymbol{C}$ ('simplification'): True-False?If $\boldsymbol{A B}=\mathbf{0}$ then either $\boldsymbol{A}=0$ or $\boldsymbol{B}=0$: True or False?$\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}:$ True or false??

Square matrices. Matrix powers

> Important particular case when $\boldsymbol{n}=\boldsymbol{m}$ - so matrix is $\boldsymbol{n} \times \boldsymbol{n}$
$>$ In this case if \boldsymbol{x} is in \mathbb{R}^{n} then $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ is also in \mathbb{R}^{n}
$>\boldsymbol{A A}$ is also a square $\boldsymbol{n} \times \boldsymbol{n}$ matrix and will be denoted by \boldsymbol{A}^{2}
More generally, the matrix \boldsymbol{A}^{k} is the matrix which is the product of k copies of \boldsymbol{A} :

$$
A^{1}=A ; \quad A^{2}=A A ; \quad \cdots \quad A^{k}=\underbrace{A \cdots A}_{k \text { times }}
$$

$>$ For consistency define \boldsymbol{A}^{0} to be the identity: $\boldsymbol{A}^{0}=\boldsymbol{I}_{n}$,$A^{l} \times A^{k}=A^{l+k}$ - Also true when k or l is zero.

More on matrix produts

$>$ Recall: Product of the matrix \boldsymbol{A} by the vector \boldsymbol{x} :

$$
\left.\begin{array}{c}
y \\
{\left[\begin{array}{c}
\boldsymbol{\beta _ { 1 }} \\
\vdots \\
\boldsymbol{\beta}_{j} \\
\vdots \\
\boldsymbol{\beta}_{n}
\end{array}\right]}
\end{array}=\begin{array}{cccc}
A & \\
{\left[\begin{array}{cccc}
a_{11} & \cdots & a_{1 j} & \cdots
\end{array} a_{1 n}\right.} \\
\vdots & & \vdots & \\
\vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots \\
\vdots & & a_{i n} \\
a_{m 1} & \cdots & a_{m j} & \cdots \\
\vdots
\end{array}\right] \begin{gathered}
x \\
{\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{j} \\
\vdots \\
\alpha_{n}
\end{array}\right]}
\end{gathered}
$$

- $\boldsymbol{x}, \boldsymbol{y}$ are vectors; \boldsymbol{y} is the result of $\boldsymbol{A} \times \boldsymbol{x}$.
- $a_{1}, a_{2}, \ldots, a_{n}$ are the columns of A
- $\alpha_{1} a_{1}$ is the first column of A multiplied by the scalar α_{1} which is the first component of \boldsymbol{x}.
- $\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{n} a_{n}$ is a linear combination of $a_{1}, a_{2}, \cdots, a_{n}$ with weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.
> This is the 'column-wise' form of the 'matvec'

Example:

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right] \quad x=\left[\begin{array}{c}
-2 \\
1 \\
-3
\end{array}\right] \quad y=?
$$

Result:

$$
y=-2 \times\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1 \times\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-3 \times\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-10
\end{array}\right]
$$

> Can get i-th component of the result y without the others:

$$
\beta_{i}=\alpha_{1} a_{i 1}+\alpha_{2} a_{i 2}+\cdots+\alpha_{n} a_{i n}
$$

Example: In the above example extract $\boldsymbol{\beta}_{2}$

$$
\beta_{2}=(-2) \times 0+(1) \times(-1)+(-3) \times(3)=-10
$$

$>$ Can compute $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{m}$ in this way.
$>$ This is the 'row-wise' form of the 'matvec'

Example: $\quad A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right] \quad B=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2 \\ -3 & 2\end{array}\right] \quad A B=$?

$$
\begin{aligned}
B & \left.=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]\right] \\
& =\left[\begin{array}{cc}
3 & -6 \\
-10 & 8
\end{array}\right]
\end{aligned}
$$

$>$ First column has been computed before: it is equal to: $(-2)^{*}(\operatorname{col} .1$ of $\boldsymbol{A})+(1)^{*}(\operatorname{col} .2$ of $\boldsymbol{A})+(-3)^{*}(\operatorname{col} .3$ of $\boldsymbol{A})$
$>$ Second column is equal to:
$(1)^{*}($ col. 1 of $\boldsymbol{A})+(-2)^{*}($ col. 2 of $\boldsymbol{A})+(2)^{*}(\operatorname{col} .3$ of $\boldsymbol{A})$

Matrix-Matrix product

When \boldsymbol{A} is $\boldsymbol{m} \times \boldsymbol{n}, \boldsymbol{B}$ is $\boldsymbol{n} \times \boldsymbol{p}$, the product $\boldsymbol{A B}$ of the matrices \boldsymbol{A} and \boldsymbol{B} is the $\boldsymbol{m} \times \boldsymbol{p}$ matrix defined as

$$
A B=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

Each $\boldsymbol{A} \boldsymbol{b}_{j}$ is a matrix-vector product: the product of \boldsymbol{A} by the j-th column of \boldsymbol{B}. Matrix $\boldsymbol{A B}$ has dimension $\boldsymbol{m} \times \boldsymbol{p}$
$>$ Can use what we know on matvecs to perform the product

1. Column form - In words: "The \boldsymbol{j}-th column of $\boldsymbol{A B}$ is a linear combination of the columns of A, with weights $b_{1 j}, b_{2 j}, \cdots, b_{n j}$ " (entries of \boldsymbol{j}-th col. of \boldsymbol{B})
7-30
2. If we call \boldsymbol{C} the matrix $\boldsymbol{C}=\boldsymbol{A B}$ what is $c_{i j}$? From above:

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}+\cdots+a_{i n} b_{n j}
$$

$>$ Fix j and run $i \longrightarrow$ column-wise form just seen
3. Fix i and run $\boldsymbol{j} \longrightarrow$ row-wise form

Example: Get second row of $\boldsymbol{A B}$ in previous example.

$$
c_{2 j}=a_{21} b_{1 j}+a_{22} b_{2 j}+a_{23} b_{3 j}, \quad j=1,2
$$

- Can be read as : $c_{2:}=a_{21} b_{1:}+a_{22} b_{2:}+a_{23} b_{3:}$, or in words: row 2 of $\mathrm{C}=\boldsymbol{a}_{21}($ row 1 of B$)+a_{22}($ row 2 of B$)+a_{23}($ row 3 of B$)$

$$
\begin{aligned}
& =0(\text { row1 of } B)+(-1)(\text { row } 2 \text { of } B)+(3)(\text { row3 of } B) \\
& =\left[\begin{array}{ll}
-10 & 8
\end{array}\right]
\end{aligned}
$$

[^0]: $>$ Denoted by $\boldsymbol{A B}$

