LINEAR MAPPINGS [1.8]

Introduction to linear mappings [1.8]

 \triangleright A transformation or function or mapping from \mathbb{R}^n to \mathbb{R}^m is a rule which assigns to every x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m .

 \mathbb{R}^n is called the domain space of T and \mathbb{R}^m the image space or co-domain of T.

➤ Notation:

$$T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$$

T(x) is the image of x under T

Example: Take the mapping from \mathbb{R}^2 to \mathbb{R}^3 :

$$egin{array}{cccc} T:& \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \ & x=egin{pmatrix} x_1 \ x_2 \end{pmatrix} & \longrightarrow & T(x)=egin{pmatrix} x_1+x_2 \ x_1x_2 \ x_1^2+x_2^2 \end{pmatrix} \end{array}$$

7-1

Example: Another mapping from \mathbb{R}^2 to \mathbb{R}^3 :

$$egin{array}{cccc} T: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \ & x=egin{pmatrix} x_1 \ x_2 \end{pmatrix} & \longrightarrow T(x) = egin{pmatrix} x_1+x_2 \ x_1-x_2 \ x_1+5x_2 \end{pmatrix} \end{array}$$

What is the main difference between these 2 examples?

Definition A mapping T is linear if:

(i) T(u+v)=T(u)+T(v) for u,v in the domain of T

(ii) $T(\alpha u) = \alpha T(u)$ for all $\alpha \in \mathbb{R}$, all u in the domain of T

The mapping of the second example given above is linear - but not for the first one.

If a mapping is linear then T(0) = 0. (Why?)

Observation: A mapping is linear if and only if

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$

for all scalars α , β and all u, v in the domain of T.

Prove this

Consequence:

Text:1.8-9 - Mappings

$$T(lpha_1u_1+lpha_2u_2+\cdots+lpha_pu_p)=lpha_1T(u_1)+lpha_2T(u_2)+\cdots+lpha_pT(u_p)$$

 \triangleright Given an $m \times n$ matrix A, consider the special mapping:

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m \ x \longrightarrow y = Ax$$

Domain == ??; Image space == ??

From what we saw earlier ['Properties of the matrix-vector product'] such mappings are linear

➤ As it turns out:

If T is linear, there exists a matrix A such that T(x) = Ax for all x in \mathbb{R}^n

- In plain English: 'A linear mapping can be represented by a matvec'
- ightharpoonup A is the representation of T.

7-6 ______ Text:1.8-9 - Mapping

7-6

- Text:1.8-9 Mappings
- \blacktriangleright How can we determine A?
- ➤ Notation let

$$e_j = egin{bmatrix} 0 \ dots \ 0 \ 1 \ 0 \ dots \ 0 \end{bmatrix} j - ext{th row} \hspace{0.5cm} x = egin{bmatrix} lpha_1 \ lpha_2 \ dots \ lpha_j \ dots \ lpha_n \end{bmatrix}$$

- ullet Write a vector x in \mathbb{R}^n as $x=lpha_1e_1+\cdots+lpha_ne_n$.
- ullet Then note that $T(x)=lpha_1T(e_1)+\cdots+lpha_nT(e_n)$
- ullet Therefore the columns of the matrix representation of T must be the vectors $T(e_j)$ for $j=1,\cdots,n$

- Let A be a square matrix. Is the mapping $x \to x + Ax$ linear? If so find the matrix associated with it.
- Same questions for the mapping $x o Ax + \alpha x$ where α is a scalar.
- ➤ Is this a linear mapping?
- Read Section 1.9 and explore the notions of onto mappings ('surjective') and one-to-one mappings ('injective') in the text. You must at least know the definitions.
- A mapping is onto if and only if
- A mapping is one-to-one if and only if

7-8 ______ Text:1.8-9 - Mapping

7 lext:1.8-9 - Mapping

Onto and one-to-one mappings

Let T a mapping – not necessarily linear for now – from a domain set \mathcal{D} (subset of \mathbb{R}^n) into an image set \mathcal{I} (subset of \mathbb{R}^m)

The range of T is the set of all possible vectors of the form T(x) for $x \in \mathcal{D}$.

- We say that T is onto if for every y in $\mathcal I$ there is at least one x in $\mathcal D$ such that y=T(x).
- \blacktriangleright In other words T is onto if the range of T equals all of ${\cal I}$
- We say that T is one-to-one if for every y in $\mathcal I$ there is at most one x in $\mathcal D$ such that y=T(x).
- lacksquare In other words if $T(u_1)=T(u_2)$ then we must have $u_1=u_2$

7-9 Text:1.8-9 — Mappings

7-9

Donnain

R

Not onto

- \blacktriangleright Now consider linear mappings: let T represented by a matrix A
- \triangleright Now: Domain \mathcal{D} is all of \mathbb{R}^n and Image set \mathcal{I} is all of \mathbb{R}^m .
- So: A is one-to-one when every y in \mathbb{R}^m is 'reached' by A, i.e., if every y in \mathbb{R}^m can be written as y = Ax for some $x \in \mathbb{R}^n$. Since Ax is a linear combination of the columns of A, this means that:
- lacksquare A is onto iff the span of the columns of A equals \mathbb{R}^m

7-10 ______ Text:1.8-9 - Mappings

7-10

- Show that A is one-to-one iff the columns of A are linearly independent.
- \nearrow Find a 3×3 example of a mapping that is not onto
- Finf a 3×3 example of a mapping that is not one-to-one.

MATRIX OPERATIONS [2.1]

7-11 Text:1.8-9 — Mappings

Matrix operations

If A is an $m \times n$ matrix (m rows and n columns) —then the scalar entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i,j)-entry of A.

7-13 Text: 2.1 – Matrix

- The diagonal entries in an $m \times n$ matrix A are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the main diagonal of A.
- ➤ A diagonal matrix is a matrix whose nondiagonal entries are zero
- An important example is the $n \times n$ identity matrix, I_n (each diagonal entry equals one) Example:

$$I_3 = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

Another important matrix is the zero matrix (all entries are 0). It is denoted by O.

- \triangleright The number a_{ij} is the *i*th entry (from the top) of the *j*th column
- \blacktriangleright Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^m called a column vector
- The columns are denoted by $a_1,...,a_n$, and the matrix A is written as $A=[a_1,a_2,\cdots,a_n]$

7-14 Text: 2.1 – Matrix

7-14

Equality of two matrices: Two matrices A and B are equal if they have the same size (they are both $m \times n$) and if their entries are all the same.

$$a_{ij}=b_{ij}$$
 for all $i=1,\cdots,m, \ \ j=1,\cdots,n$

Sum of two matrices: If A and B are $m \times n$ matrices, then their sum A + B is the $m \times n$ matrix whose entries are the sums of the corresponding entries in A and B.

If we call C this sum we can write:

$$c_{ij}=a_{ij}+b_{ij}$$
 for all $i=1,\cdots,m, \ \ j=1,\cdots,n$

Æ

$$\begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 1 & -3 \\ 0 & 2 & -2 \end{bmatrix} = ???; \qquad \begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -3 \\ 2 & -2 \end{bmatrix} = ??$$

7-16 ______ Text: 2.1 – Matri

7-15

scalar multiple of a matrix If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose entries are r times the corresponding entries in A.

$$(lpha A)_{ij} = lpha a_{ij}$$
 for all $i=1,\cdots,m, \quad j=1,\cdots,n$

Theorem Let A, B, and C be matrices of the same size, and let α and β be scalars. Then

- A + B = B + A
- (A+B)+C=A+(B+C)
- A + 0 = A
- $\bullet \ \alpha(A+B) = \alpha A + \alpha B$
- $\bullet \ (\alpha + \beta)A = \alpha A + \beta A$
- $\bullet \ \alpha(\beta A) = (\alpha \beta) A$

Prove all of the above equalities

7-17 ______ Text: 2.1 – Mai

7-17

Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$A(Bx) = Cx$$

- ightharpoonup Assume A is m imes n, B is n imes p , and x is in \mathbb{R}^p
- ightharpoonup Denote the columns of B by b_1, \dots, b_p and the entries in x by x_1, \dots, x_p . Then:

$$Bx = x_1b_1 + \dots + x_pb_p$$

Text: 2.1 – Matrix

- ightharpoonup When a matrix B multiplies a vector x, it transforms x into the vector Bx.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is A(Bx).

- ightharpoonup Thus A(Bx) is produced from x by a composition of mappingsthe linear transformations induced by B and A.
- ightharpoonup Note: x o yA(Bx) is a linear mapping (prove this).

7-18 Text: 2.1 – Matrix

7-18

- By the linearity of multiplication by A: $A(Bx) = A(x_1b_1) + \cdots + A(x_pb_p) = x_1Ab_1 + \cdots + x_pAb_p$
- ightharpoonup The vector A(Bx) is a linear combination of Ab_1, \cdots, Ab_p , using the entries in x as weights.
- In matrix notation, this linear combination is written as

$$A(Bx) = [Ab_1, Ab_2, \cdots Ab_p].x$$

- ightharpoonup Thus, multiplication by $[Ab_1,Ab_2,\cdots,Ab_p]$ transforms x into A(Bx).
- Therefore the desired matrix C is the matrix

$$C = [Ab_1, Ab_2, \cdots, Ab_p]$$

lacksquare Denoted by AB

7-20 Text: 2.1 – Matrix

Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \dots, b_p , then the product AB is the matrix whose p columns are Ab_1, \dots, Ab_p . That is:

$$AB=A[b_1,b_2,\cdots,b_p]=[Ab_1,Ab_2,\cdots,Ab_p]$$

➤ Important to remember that :

Multiplication of matrices corresponds to composition of linear transformations.

 \triangle Operation count: How many operations are required to perform product AB?

7-21 Text: 2.1 – Matrix

7-21

lacktriangle Compute $m{AB}$ when

$$A = egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix} \quad B = egin{bmatrix} 0 & 2 & -1 \ 1 & 3 & -2 \end{bmatrix}$$

lacktriangle Compute $m{AB}$ when

$$A = egin{bmatrix} 2 & -1 & 2 & 0 \ 1 & -2 & 1 & 0 \ 3 & -2 & 0 & 0 \end{bmatrix} \quad B = egin{bmatrix} 1 & -1 & -2 \ 0 & -2 & 2 \ 2 & 1 & -2 \ -1 & 3 & 2 \end{bmatrix}$$

lacktriangle Can you compute $m{AB}$ when

$$A=egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix} \quad B=egin{bmatrix} 0 & 2 \ 1 & 3 \ -1 & 4 \end{bmatrix}?$$

7-22 Text: 2.1 – Matrix

7-22

$Row\text{-}wise\ matrix\ product$

- ightharpoonup Recall what we did with matrix-vector product to compute a single entry of the vector Ax
- \triangleright Can we do the same thing here? i.e., How can we compute the entry c_{ij} of the product AB without computing entire columns?
- \triangle Do this to compute entry (2,2) in the first example above.
- Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?

Properties of matrix multiplication

Theorem Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- ullet A(BC) = (AB)C (associative law of multiplication)
- A(B+C) = AB + AC (left distributive law)
- (B+C)A = BA + CA (right distributive law)
- ullet $\alpha(AB)=(\alpha A)B=A(\alpha B)$ for any scalar α
- $I_m A = A I_n = A$ (product with identity)
- If AB = AC then B = C ('simplification'): True-False?
- If AB=0 then either A=0 or B=0: True or False?
- AB = BA: True or false??

7-23 ______ Text: 2.1 – Matrix

Text: 2.1 – Matrix

Square matrices. Matrix powers

- \blacktriangleright Important particular case when n=m so matrix is $n\times n$
- ightharpoonup In this case if x is in \mathbb{R}^n then y=Ax is also in \mathbb{R}^n
- igwedge AA is also a square n imes n matrix and will be denoted by A^2
- More generally, the matrix A^k is the matrix which is the product of k copies of A:

ples of
$$A$$
: $A^1=A; \quad A^2=AA; \quad \cdots \quad A^k=\underbrace{A\cdots A}_{k \text{ times}}$

- ightharpoonup For consistency define A^0 to be the identity: $A^0=I_n$
- $A^l \times A^k = A^{l+k}$ Also true when k or l is zero.

7-25 Text: 2.1 – Matrix

7-25

Text: 2.1 - Matrix

-26

More on matrix produts

 \triangleright Recall: Product of the matrix A by the vector x:

$$= \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$$

- x, y are vectors; y is the result of $A \times x$.
- $a_1, a_2, ..., a_n$ are the columns of A

• $\alpha_1, \alpha_2, ..., \alpha_n$ are the components of x [scalars]

- $\alpha_1 a_1$ is the first column of A multiplied by the scalar α_1 which is the first component of x.
- $\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$ is a linear combination of a_1, a_2, \cdots, a_n with weights $\alpha_1, \alpha_2, ..., \alpha_n$.
- This is the 'column-wise' form of the 'matvec'

Example: $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad x = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \quad y = ?$

➤ Result:

$$y = -2 imes egin{bmatrix} 1 \ 0 \end{bmatrix} + 1 imes egin{bmatrix} 2 \ -1 \end{bmatrix} - 3 imes egin{bmatrix} -1 \ 3 \end{bmatrix} = egin{bmatrix} 3 \ -10 \end{bmatrix}$$

7-28 Text: 2.1 – Matrix

lext: 2.1 – Matrix2

7-27

7-

Transpose of a matrix

Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

 ${\it Theorem}$: Let ${\it A}$ and ${\it B}$ denote matrices whose sizes are appropriate for the following sums and products.

- $\bullet \ (A^T)^T = A$
- $\bullet \ (A + B)^T = A^T + B^T$
- ullet $(lpha A)^T = lpha A^T$ for any scalar lpha
- $\bullet \ (AB)^T = B^T A^T$

 \triangleright Can get *i*-th component of the result y without the others:

$$\beta_i = \alpha_1 a_{i1} + \alpha_2 a_{i2} + \dots + \alpha_n a_{in}$$

Example: In the above example extract β_2

$$\beta_2 = (-2) \times 0 + (1) \times (-1) + (-3) \times (3) = -10$$

- ightharpoonup Can compute eta_1,eta_2,\cdots,eta_m in this way.
- ➤ This is the 'row-wise' form of the 'matvec'

7-29 ______ Text: 2.1 - Matrix2

7-29

Example: $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ $B = \begin{bmatrix} -2 & 1 \\ 1 & -2 \\ -3 & 2 \end{bmatrix}$ AB = ?

Result:
$$B = \begin{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & -6 \\ -10 & 8 \end{bmatrix}$$

- First column has been computed before: it is equal to: (-2)*(col. 1 of A) + (1)*(col. 2 of A) + (-3)*(col. 3 of A)
- Second column is equal to: (1)*(col. 1 of A) + (-2)*(col. 2 of A) + (2)*(col. 3 of A)

Matrix-Matrix product

ightharpoonup When A is m imes n, B is n imes p, the product AB of the matrices A and B is the m imes p matrix defined as

$$AB = [Ab_1, Ab_2, \cdots, Ab_p]$$

- \blacktriangleright Each Ab_j is a matrix-vector product: the product of A by the j-th column of B. Matrix AB has dimension m imes p
- Can use what we know on matvecs to perform the product
- 1. Column form In words: "The j-th column of AB is a linear combination of the columns of A, with weights $b_{1j}, b_{2j}, \cdots, b_{nj}$ " (entries of j-th col. of B)

7-30 Text: 2.1 – Matrix2

7-30

2. If we call C the matrix C = AB what is c_{ij} ? From above:

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{ik}b_{kj}+\cdots+a_{in}b_{nj}$$

- \blacktriangleright Fix j and run $i \longrightarrow$ column-wise form just seen
- 3. Fix i and run $j \longrightarrow$ row-wise form

Example: Get second row of **AB** in previous example.

$$c_{2j} = a_{21}b_{1j} + a_{22}b_{2j} + a_{23}b_{3j}, \quad j = 1, 2$$

ullet Can be read as : $oxed{c_{2:}=a_{21}b_{1:}+a_{22}b_{2:}+a_{23}b_{3:}}$, or in words:

row2 of C =
$$a_{21}$$
 (row1 of B) + a_{22} (row2 of B) + a_{23} (row3 of B)
= 0 (row1 of B) + (-1) (row2 of B) + (3) (row3 of B)
= $\begin{bmatrix} -10 & 8 \end{bmatrix}$

Text: 2.1 – Matrix2

7_32