
INVERSE OF A MATRIX [2.2]
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The inverse of a matrix: Introduction

ä We have a mapping from Rn to Rn represented by a matrix A.

ä Can we invert this mapping?
i.e. can we find a matrix (call it
B for now) such that when B is
applied to Ax the result is x?

Axx

Product by A 

Product by B 

ä Example: blurring operation. We want to ‘revert’ blurring, i.e.,
to deblur. So: Blurring: A; Deblurring: B.

ä B is the inverse of A and is denoted by A−1.
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ä Recall that Inx = x for all x.

ä Since we want A−1(Ax) = x for all x this means, we need to
have

A−1A = In

ä Naturally the inverse of A−1 should be A so we also want

AA−1 = In

ä Finding an inverse to A is not always possible. When it is we
say that the matrix A is invertible

ä Next: details.
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The inverse of a matrix

ä An n×n matrix A is said to be invertible if there is an n×n
matrix B such that BA = I and AB = I where I = In , the
n× n identity matrix.

ä In this case, B is an inverse of A. In fact, B is uniquely
determined by A: If C were another inverse of A, then

C = CI = C(AB) = (CA)B = IB = B

ä This unique inverse is denoted by A−1 -so that

AA−1 = A−1A = I
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Matrix inverse - the 2× 2 case

ä Let A =

[
a b
c d

]
. If ad− bc 6= 0 then A is invertible and

A−1 =
1

ad− bc

[
d −b
−c a

]
- Verify the result

ä If ad − bc = 0 then A is not invertible (does not have an
inverse)

ä The quantity ad− bc is called the determinant of A (det(A))

ä The above says that a 2 × 2 matrix is invertible if and only if
det(A) 6= 0.

8-5 Text: 2.2 – Inverse

8-5



Matrix inverse - Properties

Theorem If A is invertible, then for each b in Rn, the equation
Ax = b has the unique solution x = A−1b.

Proof: Take any b in Rn. A solution exists because if A−1b is substituted for x,

then Ax = A(A−1b) = (A−1A)b = Ib = b. So A−1b is a solution.

To prove that the solution is unique, show that if u is any solution, then u must be

A−1b . If Au = b, we can multiply both sides by A−1 and obtain A−1Au =

A−1b, so Iu = A−1b, and u = A−1b

ä Recall: A is one-to-one iff its columns are linearly independent.

- Show: If A is invertible then it is one to one, i.e., its columns
are linearly independent.
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Matrix inverse - Properties

a. If A is an invertible matrix, then A−1 is invertible and

(A−1)−1 = A

b.
If A and B are n × n invertible matrices, then so is
AB, and we have

(AB)−1 = B−1A−1

c.
If A is an invertible matrix, then so is AT , and the
inverse of AT is the transpose of A−1 :

(AT)−1 = (A−1)T

ä Common notation (AT)−1 ≡ A−T
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Elementary matrices

- Consider the matrix on the right and call it
E. What is the result of the product EA for
some matrix A?


1 0 0 0
0 1 0 0
−r 0 1 0
0 0 0 1


- Can this operation result in a change of the linear independence
of the columns of A? [prove or disprove]

- Consider now the matrix on the right
[obtained by swapping rows 2 and 4 of I]. Call
it P . Same questions as above.


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


ä Matrices like E (elementary elimination matrix) and P (permu-
tation matrix) are called ‘elementary matrices’
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Elimination algorithms and elementary matrices

ä We will show this:

The following algorithms: Gaussian elimination, Gauss-Jordan,
reduction to echelon form, and to reduced row echelon form,
are all based on multiplying the original matrix by a sequence of
elementary matrices to the left. Each of these transformations
preserves linear independence of the columns of the original matrix.

ä An elementary matrix is one that is obtained by performing a
single elementary row operation on an identity matrix.

ä Let us revisit Gaussian Elimination - Recommended : compare
with lecture note example on section 1.1..
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Recall: Gaussian Elimination

ä Consider example seen in section 1.1 – Step 1 must transform:

2 4 4 2
1 3 1 1
1 5 6 −6

into:
x x x x
0 x x x
0 x x x

row2 := row2− 1
2
× row1: row3 := row3− 1

2
× row1:

2 4 4 2
0 1 −1 0
1 5 6 −6

2 4 4 2
0 1 −1 0
0 3 4 −7
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ä The first transformation ( row2 := row2 − 1
2
× row1 ) is

equivalent to performing this product:

1 0 0
− 1

2
1 0

0 0 1
×

2 4 4 2
1 3 1 1
1 5 6 −6

=
2 4 4 2
0 1 −1 0
1 5 6 −6

ä Similarly, operation of row3 is equivalent to product:

1 0 0
0 1 0
− 1

2
0 1

×
2 4 4 2
0 1 −1 0
1 5 6 −6

=
2 4 4 2
0 1 −1 0
0 3 4 −7

ä Hint: Use the row-wise form of the matrix products

ä Matrix on the left is called an Elementaty elimination matrix

- Do the same thing for 2nd (and last) step of GE.
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Another type of elementary matrices: Permutations

ä A permutation matrix is a matrix
obtained from the identity matrix by per-
muting its rows
ä For example for the permutation p =
{3, 1, 4, 2} we obtain −→

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


ä Important observation: the matrix PA is obtained from A by
permuting its rows with the permutation p

(PA)i,: = Ap(i),:

In words: the i-th row of PA is row number p(i) of A.
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ä What does this mean?

It means that for example the 3rd row of PA is simply row number
p(3) which is 4, of the original matrix A.

3rd row of PA equals p(3)−th row of A

- Why is this true?

- What can you say of the j-th column of AP ?

- What is the matrix PA when

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 A =


1 2 3 4
5 6 7 8
9 0 −1 2
−3 4 −5 6

 ?
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Back to elementary matrices

ä Do the elementary matrices E1, E2, ..., En−1 (including per-
mutations) change linear independence of the columns?

- Prove: If u, v, w (3 columns of A) are independent then
the columns E1u,E1v, E1w are independent where E1 is an
elementary matrix (elimination matrix or a permutation matrix).

ä So: (*Very important*) Elimination operations (Gaussian elimi-
nation, Gauss-Jordan, reduction to echelon form, and to rref) preserve
the linear independence of the columns.

ä This will help us establish the main results on inverses of matrices
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Existence of the inverse and related properties

We are now prepared to prove the following theorem.

Existence Theorem. The 4 following statements are equivalent
(1) A is invertible
(2) The columns of A are linearly independent
(3) The Span of the columns of A is Rn

(4) rref(A) is the identity matrix
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1 2

43

(2)↔ (4).

Theorem: Let A be an n × n matrix. Then the
columns of A are linearly independent iff its reduced
echelon form is the identity matrix

→ Only way in which the rref(A) 6= I is by having at least one free variable.

Form the augmented system [A, 0]. Set this free variable to one (other free var.

to zero) and solve for the basic variables. Result: a nontrivial sol. to the systsm

Ax = 0 → Contradiction

← If rref(A) = I then columns of A are independent since the elementary

operations do not alter linear dependence.

- (**) Let A an n × n matrix with independent columns and
b ∈ Rn a right-hand side. Apply rref to [A, b]. What do A and b
become? [Hint: use result of 1st part of proof above]. Consequence?
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1 2

43

Proof: (3)→ (4). As was seen before – (3) implies that
there is a pivot in every row. Since the matrix is n×n the only
possible rref echelon matrix of this type is I.

1 2

43

Proof: (2)→ (3) Proof by contradiction. Assume A has

linearly independent columns. And assume that some system

Ax = b does not have a solution. Then A, b will have a

reduced row echelon form in which b will become a pivot. So

there is a zero row in the A part of the echelon matrix.. This

means we have at least a free variable - So systems Ax = 0

will have nontrivial solutions→ contradiction.
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1 2

43

(2)↔ (1)

Theorem: Let A be an n× n matrix. Then A has
independent columns if and only if A is invertible.

→ From previous theorem, A can be reduced to the identity matrix with the
reduced echelon form procedure. There are elementary matrices E1, E2, ...., Ep

such that EpEp−1 · · ·E2E1A = I (Step 1: left-multuply A by E1; Step 2:
left-multuply result by E2; etc.. )

Call C the matrix EpEp−1 · · ·E1. Then CA = I. So A has a ‘left-inverse’.

ä It also has a right inverse X (s.t. AX = I) because any system Ax = b
has a solution (See exercise - (**) seen earlier).

Therefore we can solve Axi = ei, where ei is the i-th col. if I. For X =
[x1, x2, · · · , xn] this gives AX = I.

Finally, X = C. Indeed CA = I → C(AX) = X (because AX = I). So
C = X.

8-18 Text: 2.2 – Inverse

8-18



← Let A be invertible. Its columns are lin. independent if (by definition) Ax =

0 implies x = 0 - this is trivially true as can be seen by multiplying Ax = 0 to

the left by A−1.

1 2

43

Q: Is the Existence Theorem proved?
A: Yes.

ä Here is what you need to remember:

A invertible ⇔ rref(A) = I ⇔ cols(A) Lin.
independ

m

cols(A) Span Rn
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Computing the inverse

Q: How do I compute the inverse of a matrix A?

A: Two common strategies [not necessarily the best]

• Using the reduced row echelon form

• Solving the n systems Ax = ei for i = 1, · · · , n

How to use the echelon form?

ä Could record the product of the Ei’s as suggested by one of the
previous theorems→ Too complicated!
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ä Instead get the reduced echelon form of the augmented matrix

[A, I]

ä Assuming A is invertible result is of the form

[I, C]

ä The inverse is C.

- Explain why.

- What will happen if A is not invertible?
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Example: Compute the inverse of

0 1
2
−1

1
2

3
4

1
2

1
2
−1

4
3
2


Solution. First form the

augmented matrix

0 1
2
−1 1 0 0

1
2

3
4

1
2

0 1 0
1
2
−1

4
3
2

0 0 1

ä Then get reduced ech-
elon form:

1 0 0 5 −2 4
0 1 0 −2 2 −2
0 0 1 −2 1 −1

Inverse is C =

 5 −2 4
−2 2 −2
−2 1 −1
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Example of application: Classical Crypto

ä Idea of cryptography: A mapping from some space to itself.

Encoding = applying the mapping.

Decoding = applying the inverse mapping.

ä Simple example: Hill’s cipher [linear]

Wll describe a simplification of the scheme

• Associate a number to every letter [e.g., 0–25]:
A→ 0; B→ 1 ; C→ 2 ; ....; Z→ 25

• 1st step: translate message with these numbers.
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Example: “BUY GOOGLE TODAY”

Translates to (note: ‘26’ is for space)
1, 20, 24, 26, 6, 14, 14, 6, 11, 4, 26, 13 14, 22, 26

• 2nd step: Put that into a matrix of size 3×??

Message = X =

 1 26 14 4 14
20 6 6 26 22
24 14 11 13 26


• 3rd step: Scramble message with Encoding matrix:

A =

−3 −3 −40 1 1
4 3 4
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ä This means multiply X by A to get the encoded message:

Y = AX =

−159 −152 −104 −142 −21244 20 17 39 48
160 178 118 146 226


... which is transmitted.

• 4th step: The receiver must now decode the message by applying
the inverse of A which in this case is:

A−1 =

 1 0 1
4 4 3
−4 −3 −3


ä Decoded message : X = A−1Y =

 1 26 14 4 14
20 6 6 26 22
24 14 11 13 26
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ä To break the code all you need is the mapping A

ä Then compute A−1 (easy)

ä Mapping is linear and so it is easy to find A.

- How would you proceed to get A? [Recall Practice exercise sets
8 & 9]

- How many messages do you need to intercept to do this? Is the
message “Hello” enough? How about “Good morning”?

ä Nonlinear codes are much harder to break..

ä Hill’s cipher adds a ‘modulo’ operation by translating Y into
letters first. For example, 226 will become Mod(226,25)=1 which
gives ‘B’ .... more complicated.
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