Recall that $I_{n} x=x$ for all x.
$>$ Since we want $\boldsymbol{A}^{-1}(\boldsymbol{A x})=\boldsymbol{x}$ for all \boldsymbol{x} this means, we need to have

$$
A^{-1} A=I_{n}
$$

$>$ Naturally the inverse of \boldsymbol{A}^{-1} should be \boldsymbol{A} so we also want

$$
A A^{-1}=I_{n}
$$

> Finding an inverse to \boldsymbol{A} is not always possible. When it is we say that the matrix \boldsymbol{A} is invertible
$>$ Next: details.
$>$ We have a mapping from \mathbb{R}^{n} to \mathbb{R}^{n} represented by a matrix \boldsymbol{A}.
Can we invert this mapping?
i.e. can we find a matrix (call it
\boldsymbol{B} for now) such that when \boldsymbol{B} is
applied to $\boldsymbol{A} \boldsymbol{x}$ the result is \boldsymbol{x} ?
> Example: blurring operation. We want to 'revert' blurring, i.e., to deblur. So: Blurring: \boldsymbol{A}; Deblurring: \boldsymbol{B}.
$>\boldsymbol{B}$ is the inverse of \boldsymbol{A} and is denoted by \boldsymbol{A}^{-1}.
\qquad
${ }^{8-2}$

The inverse of a matrix

$>$ An $\boldsymbol{n} \times \boldsymbol{n}$ matrix \boldsymbol{A} is said to be invertible if there is an $\boldsymbol{n} \times \boldsymbol{n}$ matrix \boldsymbol{B} such that $\boldsymbol{B A}=\boldsymbol{I}$ and $\boldsymbol{A B}=\boldsymbol{I}$ where $\boldsymbol{I}=I_{n}$, the $n \times n$ identity matrix.
$>$ In this case, \boldsymbol{B} is an inverse of \boldsymbol{A}. In fact, \boldsymbol{B} is uniquely determined by \boldsymbol{A} : If \boldsymbol{C} were another inverse of \boldsymbol{A}, then

$$
C=C I=C(A B)=(C A) B=I B=B
$$

$>$ This unique inverse is denoted by \boldsymbol{A}^{-1}-so that

$$
A A^{-1}=A^{-1} A=I
$$

Matrix inverse - the 2×2 case

Let $\boldsymbol{A}=\left[\begin{array}{ll}a & b \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right]$. If $\boldsymbol{a d}-\boldsymbol{b} \boldsymbol{c} \neq 0$ then \boldsymbol{A} is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$Verify the result

$>$ If $\boldsymbol{a d}-\boldsymbol{b} \boldsymbol{c}=\mathbf{0}$ then \boldsymbol{A} is not invertible (does not have an inverse)
$>$ The quantity $\boldsymbol{a} \boldsymbol{d}-\boldsymbol{b} \boldsymbol{c}$ is called the determinant of $\boldsymbol{A}(\operatorname{det}(\boldsymbol{A}))$
$>$ The above says that a 2×2 matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

$$
\text { 8-5 Text: } 2.2 \text { - Inverse }
$$

$$
{ }^{8-5}
$$

Matrix inverse - Properties

Theorem If \boldsymbol{A} is invertible, then for each \boldsymbol{b} in $\mathbb{R}^{\boldsymbol{n}}$, the equation $\boldsymbol{A x}=\boldsymbol{b}$ has the unique solution $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$.

Proof: Take any b in \mathbb{R}^{n}. A solution exists because if $\boldsymbol{A}^{-1} \boldsymbol{b}$ is substituted for x, then $A x=A\left(A^{-1} b\right)=\left(A^{-1} A\right) b=I b=b$. So $A^{-1} b$ is a solution.
To prove that the solution is unique, show that if \boldsymbol{u} is any solution, then \boldsymbol{u} must be $\boldsymbol{A}^{-1} \boldsymbol{b}$. If $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{b}$, we can multiply both sides by \boldsymbol{A}^{-1} and obtain $\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{u}=$ $A^{-1} b$, so $\boldsymbol{I} \boldsymbol{u}=A^{-1} b$, and $\boldsymbol{u}=\boldsymbol{A}^{-1} \boldsymbol{b}$
$>$ Recall: \boldsymbol{A} is one-to-one iff its columns are linearly independent.Show: If \boldsymbol{A} is invertible then it is one to one, i.e., its columns are linearly independent.
\qquad ${ }_{8-6}$

Elementary matrices

(团 Consider the matrix on the right and call it \boldsymbol{E}. What is the result of the product $\boldsymbol{E} \boldsymbol{A}$ for some matrix \boldsymbol{A} ?
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -r & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$Can this operation result in a change of the linear independence of the columns of \boldsymbol{A} ? [prove or disprove]
(Consider now the matrix on the right [obtained by swapping rows 2 and 4 of I]. Call it \boldsymbol{P}. Same questions as above.
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
$>$ Matrices like \boldsymbol{E} (elementary elimination matrix) and \boldsymbol{P} (permutation matrix) are called 'elementary matrices'
$>$ Common notation $\left(A^{T}\right)^{-1} \equiv A^{-T}$

$$
{ }^{8-8} 工 \text { Text: } 2.2 \text { - Inverse }
$$

Elimination algorithms and elementary matrices

Recall: Gaussian Elimination

> We will show this:
The following algorithms: Gaussian elimination, Gauss-Jordan, reduction to echelon form, and to reduced row echelon form, are all based on multiplying the original matrix by a sequence of elementary matrices to the left. Each of these transformations preserves linear independence of the columns of the original matrix.

- An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.
> Let us revisit Gaussian Elimination - Recommended : compare with lecture note example on section 1.1..
\qquad
${ }^{8-9}$

The first transformation $\left(\operatorname{row}_{2}:=\operatorname{row}_{2}-\frac{1}{2} \times\right.$ row $\left._{1}\right)$ is equivalent to performing this product:

1	0	0
$-\frac{1}{2}$	1	0
0	0	1

1 \& 3 \& 1 \& 1

1 \& 5 \& 6 \& -6\end{array}\right|=\)| 2 | 4 | 4 | 2 |
| ---: | ---: | ---: | :---: |
| 0 | 1 | -1 | 0 |
| 1 | 5 | 6 | -6 |

$>$
Similarly, operation of row_{3} is equivalent to product:

1	0	0
0	1	0
$-\frac{1}{2}$	0	1

0 \& 1 \& -1 \& 0

1 \& 5 \& 6 \& -6\end{array}\right|=\)| 2 | 4 | 4 | 2 |
| ---: | ---: | ---: | :---: |
| 0 | 1 | -1 | 0 |
| 0 | 3 | 4 | -7 |Hint: Use the row-wise form of the matrix productsMatrix on the left is called an Elementaty elimination matrixDo the same thing for 2nd (and last) step of GE.

- Consider example seen in section 1.1 - Step 1 must transform:

2	4	4	2					
1	3	1	1					
1	5	6	-6	into:	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
:---:	:---:	:---:	:---:					
$\mathbf{0}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}					
0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}					

row $_{2}:=\operatorname{row}_{2}-\frac{1}{2} \times$ row $_{1}: \quad$ row $_{3}:=$ row $_{3}-\frac{1}{2} \times$ row $_{1}:$

2	4	4	2
0	1	-1	0
1	5	6	-6

2	4	4	2
0	1	-1	0
0	3	4	-7

\qquad
${ }^{8-10}$

Another type of elementary matrices: Permutations

> A permutation matrix is a matrix obtained from the identity matrix by permuting its rows
$>$ For example for the permutation $\boldsymbol{p}=$ $\{3,1,4,2\}$ we obtain

$$
P=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

> Important observation: the matrix $\boldsymbol{P} \boldsymbol{A}$ is obtained from \boldsymbol{A} by permuting its rows with the permutation \boldsymbol{p}

$$
(P A)_{i,:}=A_{p(i),:}
$$

In words: the \boldsymbol{i}-th row of $\boldsymbol{P} \boldsymbol{A}$ is row number $\boldsymbol{p}(\boldsymbol{i})$ of \boldsymbol{A}.

$$
\begin{array}{|}
8-12 \\
\hline
\end{array}
$$ $\xrightarrow{8-12}=$

$=$ \longrightarrow ${ }_{8-12}$

What does this mean?
It means that for example the 3rd row of $\boldsymbol{P} \boldsymbol{A}$ is simply row number $p(3)$ which is 4 , of the original matrix \boldsymbol{A}.

3rd row of $\boldsymbol{P A}$ equals $\boldsymbol{p}(\mathbf{3})$-th row of \boldsymbol{A}

Why is this true?What can you say of the \boldsymbol{j}-th column of $\boldsymbol{A P}$?What is the matrix $\boldsymbol{P} \boldsymbol{A}$ when$$
P=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \quad A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & -1 & 2 \\
-3 & 4 & -5 & 6
\end{array}\right) ?
$$

Back to elementary matrices

$>$ Do the elementary matrices $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \ldots, \boldsymbol{E}_{n-1}$ (including permutations) change linear independence of the columns?

Prove: If $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}(3$ columns of $\boldsymbol{A})$ are independent then the columns $\boldsymbol{E}_{1} \boldsymbol{u}, \boldsymbol{E}_{1} \boldsymbol{v}, \boldsymbol{E}_{1} \boldsymbol{w}$ are independent where \boldsymbol{E}_{1} is an elementary matrix (elimination matrix or a permutation matrix).
> So: (*Very important*) Elimination operations (Gaussian elimination, Gauss-Jordan, reduction to echelon form, and to rref) preserve the linear independence of the columns.
This will help us establish the main results on inverses of matrices
${ }^{8-14}$
(1) (2) (2) \leftrightarrow (4).
Theorem: Let \boldsymbol{A} be an $\boldsymbol{n} \times \boldsymbol{n}$ matrix. Then the columns of \boldsymbol{A} are linearly independent iff its reduced ${ }_{4}^{y}$ echelon form is the identity matrix

Existence Theorem. The 4 following statements are equivalent
(1) \boldsymbol{A} is invertible
(2) The columns of \boldsymbol{A} are linearly independent
(3) The Span of the columns of \boldsymbol{A} is \mathbb{R}^{n}
(4) $\operatorname{rref}(\boldsymbol{A})$ is the identity matrix
\qquad

$$
8 \text { 8-14 }
$$

\square Only way in which the $\operatorname{rref}(A) \neq I$ is by having at least one free variable Form the augmented system $[\boldsymbol{A}, \mathbf{0}]$. Set this free variable to one (other free var. to zero) and solve for the basic variables. Result: a nontrivial sol. to the systsm $\boldsymbol{A x}=\mathbf{0} \rightarrow$ ContradictionIf $\boldsymbol{r r e f}(A)=I$ then columns of \boldsymbol{A} are independent since the elementary operations do not alter linear dependence
(${ }^{\left({ }^{* *}\right)}$ Let \boldsymbol{A} an $n \times n$ matrix with independent columns and $b \in \mathbb{R}^{n}$ a right-hand side. Apply rref to $[A, b]$. What do \boldsymbol{A} and b become? [Hint: use result of 1st part of proof above]. Consequence?
\qquad

Proof: (3) \rightarrow (4). As was seen before $-(3)$ implies that there is a pivot in every row. Since the matrix is $\boldsymbol{n} \times \boldsymbol{n}$ the only possible rref echelon matrix of this type is \boldsymbol{I}.

Proof: (2) \rightarrow (3) Proof by contradiction. Assume \boldsymbol{A} has
(1)

linearly independent columns. And assume that some system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ does not have a solution. Then $\boldsymbol{A}, \boldsymbol{b}$ will have a reduced row echelon form in which \boldsymbol{b} will become a pivot. So there is a zero row in the \boldsymbol{A} part of the echelon matrix.. This means we have at least a free variable - So systems $\boldsymbol{A x}=0$ will have nontrivial solutions \rightarrow contradiction.
\leftleftarrows Let \boldsymbol{A} be invertible. Its columns are lin. independent if (by definition) $\boldsymbol{A x}=$ 0 implies $\boldsymbol{x}=\mathbf{0}$ - this is trivially true as can be seen by multiplying $\boldsymbol{A x}=\mathbf{0}$ to the left by \boldsymbol{A}^{-1}.

Q: Is the Existence Theorem proved?
A: Yes

Here is what you need to remember:

Computing the inverse

Q: How do I compute the inverse of a matrix \boldsymbol{A} ?
A: Two common strategies [not necessarily the best]

- Using the reduced row echelon form
- Solving the n systems $\boldsymbol{A x}=e_{i}$ for $i=1, \cdots, n$

How to use the echelon form?

$>$ Could record the product of the \boldsymbol{E}_{i} 's as suggested by one of the previous theorems \rightarrow Too complicated!

Instead get the reduced echelon form of the augmented matrix

$$
[A, I]
$$

$>$ Assuming \boldsymbol{A} is invertible result is of the form

$$
[I, C]
$$The inverse is C.Explain why.What will happen if \boldsymbol{A} is not invertible?

\qquad

Example of application: Classical Crypto
> Idea of cryptography: A mapping from some space to itself.
Encoding $=$ applying the mapping.
Decoding $=$ applying the inverse mapping.
> Simple example: Hill's cipher [linear]
WII describe a simplification of the scheme

- Associate a number to every letter [e.g., 0-25]:

$$
\mathrm{A} \rightarrow 0 ; \mathrm{B} \rightarrow 1 ; \mathrm{C} \rightarrow 2 ; \ldots ; \mathrm{Z} \rightarrow 25
$$

- 1st step: translate message with these numbers.

Example: Compute the inverse of $\left[\begin{array}{ccc}0 & \frac{1}{2} & -1 \\ \frac{1}{2} & \frac{3}{4} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{3}{2}\end{array}\right]$
Solution. First form the augmented matrix

$\mathbf{0}$	$\frac{1}{2}$	$-\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\frac{1}{2}$	$\frac{3}{4}$	$\frac{1}{2}$	0	1	0
$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{3}{2}$	0	0	1

Then get reduced echelon form:

Inverse is

$$
\begin{array}{|ccc|ccc|}
\hline 1 & 0 & 0 & 5 & -2 & 4 \\
0 & 1 & 0 & -2 & 2 & -2 \\
0 & 0 & 1 & -2 & 1 & -1
\end{array}
$$

$$
C=\left[\begin{array}{ccc}
5 & -2 & 4 \\
-2 & 2 & -2 \\
-2 & 1 & -1
\end{array}\right]
$$

$$
8-22
$$

Example: "BUY GOOGLE TODAY"

Translates to (note: '26' is for space)
$1,20,24,26,6,14,14,6,11,4,26,1314,22,26$

- 2nd step: Put that into a matrix of size $3 \times$? ?

$$
\text { Message }=X=\left[\begin{array}{ccccc}
1 & 26 & 14 & 4 & 14 \\
20 & 6 & 6 & 26 & 22 \\
24 & 14 & 11 & 13 & 26
\end{array}\right]
$$

- 3rd step: Scramble message with Encoding matrix:

$$
A=\left[\begin{array}{ccc}
-3 & -3 & -4 \\
0 & 1 & 1 \\
4 & 3 & 4
\end{array}\right]
$$

> This means multiply \boldsymbol{X} by \boldsymbol{A} to get the encoded message:

$$
Y=A X=\left[\begin{array}{ccccc}
-159 & -152 & -104 & -142 & -212 \\
44 & 20 & 17 & 39 & 48 \\
160 & 178 & 118 & 146 & 226
\end{array}\right]
$$

... which is transmitted.

- 4th step: The receiver must now decode the message by applying the inverse of \boldsymbol{A} which in this case is:

$$
A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
4 & 4 & 3 \\
-4 & -3 & -3
\end{array}\right]
$$

Decoded message : $X=A^{-1} Y=\left[\begin{array}{ccccc}1 & 26 & 14 & 4 & 14 \\ 20 & 6 & 6 & 26 & 22 \\ 24 & 14 & 11 & 13 & 26\end{array}\right]$

To break the code all you need is the mapping \boldsymbol{A}
$>$ Then compute \boldsymbol{A}^{-1} (easy)Mapping is linear and so it is easy to find \boldsymbol{A}.How would you proceed to get \boldsymbol{A} ? [Recall Practice exercise sets 8 \& 9]How many messages do you need to intercept to do this? Is the message "Hello" enough? How about "Good morning"?
> Nonlinear codes are much harder to break..
> Hill's cipher adds a 'modulo' operation by translating \boldsymbol{Y} into letters first. For example, 226 will become $\operatorname{Mod}(226,25)=1$ which gives ' B ' more complicated.

