LU factorization: Motivation

> Suppose we have to solve many linear systems

$$
A x=b^{(1)}, \quad A x=b^{(2)}, \quad \cdots, \quad A x=b^{(p)}
$$

```
THE LU FACTORIZATION [2.5]
```

There is a 3rd option (Best): Exploit "LU factorization of \boldsymbol{A} "
> Main result is this:
Gaussian elimination algorithm can provide as a by-product a *factorization* of \boldsymbol{A} into the product of a lower triangular matrix \mathbf{L} with ones on the diagonal, and an upper triangular matrix \boldsymbol{U} :

$$
A=L U
$$

In addition:
This factorization is obtained at virtually no extra cost.How would you solve systems with multiple right-hand sides using this? What does this approach cost?
> Next: The LU factorization. Where does it come from and how to get it?
where matrix \boldsymbol{A} is the same - but the right-hand sides are different $>$ Can solve each of them by Gaussian Elimination separately \rightarrow inefficientCost?
$>$ Can get the inverse \boldsymbol{A}^{-1} then each solution is of the form $\boldsymbol{x}^{(k)}=$ $\boldsymbol{A}^{-1} b^{(k)}$Cost? [Using method based on rref seen in Lec. Notes 8]

9-2 Text: $2.5-\mathrm{LU}$
$9-2$

LU factorization - Revisiting GE

$>$ We now ignore the right-hand side in GE
Recall: Gaussian elimination amounts to performing $n-1$ successive Gaussian transformations, i.e., multiplications (to the left) by elementary matrices that have ones on the diagonal and the negatives of the multipliers in the column being eliminated.
$>$ Set $\boldsymbol{A}_{0} \equiv \boldsymbol{A}$. Then - results of the $\boldsymbol{n}-1$ steps:

$$
\begin{aligned}
A_{1} & =\boldsymbol{E}_{1} \boldsymbol{A}_{0} \\
\boldsymbol{A}_{2} & =\boldsymbol{E}_{2} \boldsymbol{A}_{1}=\boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}_{0} \\
A_{3} & =\boldsymbol{E}_{3} \boldsymbol{A}_{2}=E_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}_{0} \\
\cdots & =\cdots \\
\boldsymbol{A}_{n-1} & =\boldsymbol{E}_{n-1} \boldsymbol{E}_{n-2} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}_{0}
\end{aligned}
$$

$>A_{n-1} \equiv U$ is an upper triangular matrix.
$>$ We have $\boldsymbol{U}=\boldsymbol{E}_{n-1} \boldsymbol{E}_{n-2} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}$ or :

$$
A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} \cdots E_{n-1}^{-1}}_{L} U \equiv L U
$$

$>\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \cdots, \boldsymbol{E}_{n-1}$ are all lower triangular matrices with ones on the diagonal.What is the inverse of a matrix \boldsymbol{E}_{j} ?Each \boldsymbol{E}_{j}^{-1} is lower triangular with ones on the diagonal.Show that the product of unit lower triangular matrices is unit lower triangular.
$>\boldsymbol{L}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \cdots \boldsymbol{E}_{n-1}^{-1}$ is lower triangular
$>L$ has ones on the diagonal.
\qquad

How do we get L?

Could we use: $L=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \cdots \boldsymbol{E}_{n-1}^{-1}$? Too complex!
> There is a simpler way:

Theorem.

Assume that Gaussian elimination can terminate (no division by zero) and let \boldsymbol{U} be the final triangular matrix obtained and L the lower triangular matrix with $l_{i i}=1$, and, for $i>k$, $l_{i k}=p i v_{i k}$, the multiplier used to eliminate row \boldsymbol{i} in step \boldsymbol{k}. Then: $A=L U$.
$>l_{k k}=1$ and for $i \neq k, l_{i k}=$ multiplier $a_{i k} / a_{k k}$ at k-th step of GE.
$>$ The matrix \boldsymbol{A} is the product of a unit lower triangular matrix L and an upper triangular matrix \boldsymbol{U}.
9.7 \longrightarrow Text: 2.5 - LU

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U} \quad \text { with: } \\
& \boldsymbol{L}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \cdots \boldsymbol{E}_{n-1}^{-1} \\
& \boldsymbol{U}=\boldsymbol{A}_{n-1}
\end{aligned}
$$

In the end

Called the LU decomposition (or factorization) of \boldsymbol{A}.

Notes:

> L is Lower triangular, and has ones on the diagonal - We say that it is unit lower triangular
$>\boldsymbol{U}$ is the last matrix into which \boldsymbol{A} is transformed from Gaussian elimination. It is upper triangular.
$>$ We know how to get \boldsymbol{U} [last matrix in GE]
$>$ The main issue now is: How can we get \boldsymbol{L} ?
\qquad
${ }^{9-6}$

LU factorization - an example

Example: Let $\quad A=\left[\begin{array}{ccc}4 & -2 & 2 \\ -2 & 5 & 3 \\ 2 & 3 & 9\end{array}\right]$
Step 1 of GE uses the multipliers $l_{21}=-1 / 2, l_{31}=1 / 2$.What is the matrix \boldsymbol{E}_{1} in this case?
> Resulting matrix:

$$
A_{1}=\left[\begin{array}{ccc}
4 & -2 & 2 \\
0 & 4 & 4 \\
0 & 4 & 8
\end{array}\right]
$$

Step 2 of Gaussian Elimination uses the multiplier $l_{32}=1$.What is the matrix \boldsymbol{E}_{2} ?
\qquad
$>$ Resulting matrix $\quad A_{2}=\left[\begin{array}{ccc}4 & -2 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 4\end{array}\right] \equiv U$
> Thus:

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
1 / 2 & 1 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
4 & -2 & 2 \\
0 & 4 & 4 \\
0 & 0 & 4
\end{array}\right]
$$Verify that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$LU factorization of the matrix $A=\left(\begin{array}{ccc}2 & 4 & 6 \\ 1 & 5 & 9 \\ 1 & 0 & -12\end{array}\right)$For the same \boldsymbol{A} compute the 3 rd column of \boldsymbol{A}^{-1}.

母 How would you compute the inverse of a matrix given its LU factorization?

囚 Show how to use the LU factorization to solve linear systems with the same matrix \boldsymbol{A} and different right-hand sides \boldsymbol{b}.

* True or false: "Computing the LU factorization of a matrix \boldsymbol{A} involves more arithmetic operations than solving a linear system $\boldsymbol{A x}=\boldsymbol{b}$ by Gaussian elimination" ?

