


For this experiment, we compare three of the more common shortest
path algorithms, which are A*, Dijkstra’s algorithm and Bellman-Ford al-
gorithm. The performances of these algorithms were compared using road
data of Minneapolis to find the shortest node-to-node paths in the map
of Minneapolis. These three algorithms were implemented using Java, and
their runtimes were recorded for different test cases. The motivation in doing
this is to obtain a better understanding of how different algorithms perform
on the real road data of Minneapolis. While these algorithms are often used
in shortest problems, they differ in terms of their trade-off between precision
and speed. For this project, we expect to find the algorithm that will find
the optimal shortest path from a start point to a goal point in the shortest
amount of time.

2 Related Work

One of the most common shortest path problem is one that finds the shortest
path from one node to another node in a directed graph. The main goal of
[7] was to find the fastest algorithm to compute the solution for this node-
to-node problem. The solution to this problem can be found by searching
only a part of the graph, and that means that the run time of the algorithm
used only depends on how many nodes were visited [7]. Therefore, the
performances of the algorithms in [7] were measured as a function of the
number of vertices in the solution path. When the classic A* search is
used to solve the node-to-node problem, distance bounds are implicit in
the domain description, and no preprocessing was required [7]. In contrast,
the authors of [7] developed a new pre-processing technique for computing
the distance bounds instead of just letting them be implicit in the domain
description. For this technique, they chose a number of landmarks, and then
calculated the shortest path distances between all vertices of each of these
landmarks. Then, they used these lower bounds, A* search, and the triangle
inequality to develop new algorithms which were named ALT algorithms.
They tested the performances of these algorithms against the A* algorithm
with Manhattan distances as lower bounds and the Dijkstras algorithm.
The tests were run on several different synthetic and real-road data sets.
For the real-road data, experimental results showed that the ALT algorithm
outperformed the other two by a factor of two in efficiency [7]. However, for
the randomly generated data, the ALT algorithms did not outperform the
other algorithms, and the Dijkstra’s algorithm performed the best instead.

As A* is one of the most popular path-finding algorithms, it is of no sur-

2



prise that several variations of this algorithm have been proposed through-
out the years. Botea, Muller and Schaeffer [4] present another near-optimum
path-finding algorithm called HPA* (Hierarchical PathFinding A*) which is
a variation of the traditional A* algorithm. HPA* has shown to be up to
10 times faster than A*, while finding paths that are within one percent
of the optimal solution. This technique abstracts a map into linked local
clusters. The optimal distances for crossing the cluster are pre-computed at
the local level. At the global level, clusters are traversed in a single big step.
In contrast to A*, which returns a complete path, HPA* returns a complete
path of sub-problems. This is advantageous because if we decide to change
the destination, not all effort will be wasted. Hence, this method adapts
to dynamically changing environments.Su, Li and Shiu [12] propose another
variation of A* named the Genetic Convex A* (G-CA*) algorithm. This
variant automatically cuts the original map into several convex maps. The
distance of the shortest path between any two tiles within a convex map is
proven to equal their Manhattan distance, where Manhattan distance is the
distance between two points in a grid measured along axes at right angles.
Genetic Convex A* employs the genetic algorithm to merge adjacent convex
maps and reduce the number of selected key nodes. Experiments conducted
in [12] showed that G-CA* searched fewer nodes than HPA* while preserv-
ing the optimality of A*. A drawback, however, is that G-CA* takes more
time than HPA*.

Since the experimental results of [7] suggested that the Dijkstra’s al-
gorithm is one of the main competitors of modified A* search algorithms,
a modified Dijkstra’s algorithm was examined in [11]. Noto and Sato [11]
extended the conventional Dijkstras algorithm to reduce the search time to
obtain a near-optimal solution. Since the conventional Dijkstra method re-
quires a very long search time if the path is long, the authors proposed a new
algorithm in which the Dijkstra method is applied from both directions: the
starting point and the destination. Although this algorithm takes only 1/5
of the search time of the conventional Dijkstra method, it does not always
return the optimal solution.

Besides approaches already explored, genetic algorithms can also be used
to solve the shortest path problem. In the study presented in [6], the pos-
sibility of using a genetic algorithm to solve the shortest path problem was
furthered explored. The most difficult task experienced by the researchers
while conducting this study was encoding the path in a map into a chro-
mosome. They used a priority based encoding method in order to represent
all the paths in a map. In this method, a node ID represented the position
of a gene on a chromosome, and the value of this ID was used to represent

3



the priority of this node for creating a unique path with all the nodes [6].
Instead of comparing this algorithm to current state-of-the-art algorithms,
the authors simply tried to find efficient solutions for shortest path based
optimization problems. This was because the performance of genetic algo-
rithms cannot currently outperform any of the conventional algorithms [6].
Instead, this study sought to determine if the genetic algorithms were an
area of study that was worth exploring for shortest path kinds of problems.
To make this determination, these genetic algorithms were tested on three
randomly generated shortest path problems [6]. The experimental results
in [6] showed that these problems could be solved both quickly and with a
high probability. Thus, genetic algorithms were concluded to hopefully be
a new approach for solving shortest-path kinds of problems.

Ismael et al. [8] and Machado et al. [9] presented implementations of
genetic algorithms as well their performances. In [8], Ismael et al. imple-
mented a genetic algorithm to solve a mobile robot path planning problem
in a static environment with predictable terrain. In this study, three differ-
ent environments with various obstacles were proposed, including an indoor
environment, a moderately scattered environment, and a more complexly
scattered environment. The shortest path was found in all three environ-
ment using a genetic algorithm. It was also found that the shortest path can
be found faster by increasing the number of generations. Machado et al. [9]
presented the Real Time Pathfinding with Genetic Algorithm (RTP-GA),
a method for real time path-finding algorithm based on genetic algorithms
and A* search. This algorithm uses the classic A* inside a genetic algorithm
and is claimed to be better than A* in some cases, especially since it was
designed to work in dynamic environments. In this experiment, three types
of maps were used: maps without obstacles, maps with patterns and maps
without patterns. There was a tie when comparing the RTP-GA with A* in
a map without obstacles, but RTP-GA outperformed A* in 90% of the cases
in a map with patterns. In a map without patterns, however, RTP-GA was
significantly worse than A* in most of the cases. This article claims that
RTP-GA was proven to find a path to the maze exit in 100% of the cases.

In the case of genetic algorithms in [6], the probability of getting the
optimal solution depended on the maximum generation size allowed and
population size. Thus, in order to divulge deeper into the study of genetic
algorithms, an equation that that aims to relate the size of a population,
the desired quality of a solution, and other parameters would be of great
assistance. Ahn and Ramakrishna [2] not only develops such an algorithm
but also presents a genetic algorithm that aims to solve the shortest path
problem. The experimental results from [2] show that the proposed algo-

4



rithm exhibits a higher quality solution when compared to other genetic
algorithms. Furthermore, the developed equation can be scaled to larger
networks and can be used to determine the necessary population size for
any shortest path problem.

Most previously conducted research that compared different algorithms
for finding the shortest paths usually used randomly generated networks
in order to determine the algorithms performances [13]. However, the ran-
domly generated networks might not represent the true properties of real
roads. Thus, the paper [13] explored and researched the performances of
varies algorithms on real road networks. The authors of this paper tested 15
possible algorithms on real road network data sets from 10 different states
from the Midwest and Southeast parts of the United States. When consid-
ering the performances of these different algorithms, the researchers focused
on the relative speeds of the algorithms, and memory requirements and pos-
sible implementation issues were not considered. Two of the incremental
graph algorithms, Pape-Levit implementation and Pallottino implementa-
tion, performed the best when solving the one-to-all shortest path problems
[13]. A one-to-all shortest path problem is one that requires the computa-
tion of the shortest paths from one node to all the nodes. In contrast, in
the case of one-to-some shortest path problems, the Dijkstra implementa-
tions performed the best [13]. The results of [13] are also supported by work
conducted in [5]. A dynamic road network model based on the Dijsktra’s
algorithm was build in [5] and its performance was tested against current
cutting-edge algorithms in this field. The experimental results reinforced
the same conclusion that was also reached by [13]: Dijsktra’s is the the best
algorithm for one-to-some shortest path problems in real road networks.

In most emergency situations, the most important factor considered
while choosing an path-finding algorithm is speed. Two different methods of
improving the time complexities of the A* search and Dijkstras algorithms
were analyzed in [3] and [10]. In most existing path-finding algorithms, the
number of iterations required to find the shortest path is large. To over-
come this, an algorithm that is claimed to reduce the number of iterations
required to traverse the path is proposed in [3]. This algorithm is a hy-
brid of backtracking and a new technique named the modified 8-neighbour
approach. It starts at the source node and traverses in all eight directions
of the source, repeating the process until the destination node is reached.
During each iteration, the cost of each node (distance of that node from the
center node) is updated. The proposed algorithm is observed to have less
time complexity when compared to A* and Dijkstras algorithm. In contrast,
the partitioning of graphs is used as a method in [10] in order to speed up

5



the Dijkstras algorithm. The method of acceleration used for the Dijsktra
algorithm is called the arc-flag approach. In this approach, a preprocessing
of the network data is allowed to generate additional information, which can
then be used to speedup shortest path queries [10]. The graph is divided
into several segments in the preprocessing phase, and the information is
gathered on whether the arc is the shortest path in a given region. Using
this method, in addition to a bidirectional search, enables this approach
to achieve a speedup factor of over 500 when compared to the standard
Dijkstra’s algorithm performance on large networks.

Abu-Ryash and Tamimi [1] discuss the four shortest path algorithms,
namely Dijkstra’s algorithm, Bellman-Ford algorithm, Floyd-Warshall algo-
rithm, and Johnson’s algorithm. The study investigates and compares the
impacts of these shortest path algorithms and it is shown that the efficiency
varies among algorithms. This paper states that Johnson’s algorithm is only
faster than Floyd-Warshall on sparser graphs. It also claims that Dijkstra’s
algorithm is more memory efficient for sparse graphs. Finally, although Di-
jkstra has a better time complexity than Bellman-Ford, it cannot be used
to solve graphs containing negative weights.

Lastly, all of these articles were quite varied from one another and had
few similarities. The main similarity that they all had was that they all
sought to solve the classic shortest path problem. The methods through
which each of them approached this problem is where they differed. Gold-
berg [7], Botea [4], and Su [12] explored the performances of various mod-
ified A* search algorithms. In contrast, Noto [11] and Zhan [13] sought to
prove that modified Dijkstras algorithms performed the best on real road
networks. Finally, [6], [8], [9], and [2] aimed to present the advantages of
genetic algorithms. Since speed is a vital aspect of effective route finding in
emergency situations, [3] and [10] suggested acceleration methods for com-
monly used shortest-path finding algorithms. In conclusion, though these
articles were very different from each other, they were a great way to learn
the conventional methods of solving the shortest path problems, as well as,
new areas of study that are worthy of exploration in this field.

3 Approach

Though there have been a number of algorithms proposed for finding the
shortest paths in a map, we chose to compare three different path-finding
algorithms that were the most interesting according to the work done in
[7], and [13]. The algorithms that were chosen were the A* search algo-

6



rithm, Dijkstras algorithm, and the Bellman-Ford algorithm. Most of the
prior testing has been on synthetically generated data sets. These synthetic
sets yield different results than the real road data sets when tested for per-
formances of shortest pathfinding algorithms according to [13]. Thus, the
performances of above mentioned algorithms are compared in this paper us-
ing real road data of Minneapolis to find the shortest node-to-node paths
in a map. While these algorithms are often used in shortest path problems,
they differ in terms of their trade-off between precision and speed. For this
paper, the aim is to find the algorithm that will find the optimal shortest
path from a start point to a goal point in the shortest amount of time.

Figure 1: Map of Minneapolis

Firstly, the Minneapolis road data set that was used was acquired from
the professors project suggestions document. The road data was presented in
a lisp file with each line representing a segment of a road in the Minneapolis
map. The format of each line in this file was that the first integer represented
whether this segment was a one-way or a two-way road. The next two
integers were the x and y coordinates of the start node of the segment.

7



Finally, the last two nodes were the x and y coordinates of the end node
of this segment. For example, the line (2, 1127 4523 1042 5423) would
represent a line segment that is a two way road starting at point [1127,4523]
and ending at point [1042,7545]. The lisp file has 1357 lines in it, and each
of these lines represents a segment of a road in Minneapolis. The map that
this data represents is shown in Figure 1. The parsing of this data into
a usable format was conducted in the following way. First, a Node class
was created that contained the information about the x and y coordinate
of a Node, and also information in a list about which nodes were connected
to this node. So, for each point in the map, a Node was created and the
parsing also provided the necessary information about the other points this
node was connected to. Then, a hash set was created that contained all the
nodes in main.

The A* search algorithm was the first algorithm that was chosen to be
implemented since the work done in [7], [4], and [12] pointed towards the
modified versions of this algorithm being the best options for path finding
algorithms. A* search is an algorithm in which the cost associated with a
node is f(n)=g(n)+h(n), where the h(n) is the estimated heuristic of the
distance from the n node to the goal node, and g(n) is the cost of the path
from the start node to the node n. The heuristic function used in an A*
search has to be admissible, which means that it should never overestimate
the actual distance from the node n to the goal node. Thus, for our imple-
mentation, the heuristic function was chosen to be the Euclidean distance
between the node n and the goal node. The A* search algorithm that was
tested for performance in this paper was implemented in the following way.
First, a Hash Set was created to represent the nodes that are open (meaning
that they have yet to be explored), and another Hash Set was created to
represent the nodes that were closed (meaning they were already explored).
Then, the start node is added to the open set. Then, a loop was written
that first set the node with the lowest f-cost to be the current node. Then,
the current node is removed from the open set and added to the closed set.
If the current node is the goal node then we return the path through which
it was reached. Else, for each neighbor of the current node, if the neighbor
is in the closed set then we skip to the next neighbor, and if the new path
to the neighbor is shorter or the neighbor is not in the open set, then the
f-cost of the neighbor node is set, and the parent of the neighbor is set to
the current node. Through this iterative method, the A* search algorithm
was implemented.

Dijkstra was the second algorithm that was chosen to be implemented
and tested for performance on the Minneapolis road data. The reason it was

8



chosen was because [5] stated the various advantages of using this algorithm
in path finding. The main benefit that was noted was that since Dijkstra
implementations have the advantage of being terminated as soon as they
read the destination node is permanently labeled, this results in computa-
tional time saved when trying to find destination nodes that are fairly close
to the start node. This algorithm was implemented in the following manner.
There are two hash sets, one that is the open set and the other that is the
closed set. Initially, the value of each node is set to infinity, and the source
is the only one in the open set. Then, a loop was written that considers
all of the neighbors of the current node that are not in the closed set and
calculates the distances to the current node from the start node combined
with the distance from the current node to the neighbor. If this is less than
the current distance, it is replaced with the new calculated value. After all
the neighbors are considered, the current node is moved to closed set from
the open set. When the goal node is the one that is moved to the closed
set, the algorithm terminates. Else, the node in the open set that has the
smallest set becomes the current node and the loop iterates again. Through
this method, the Dijkstra algorithm was implemented.

The Bellman-Ford algorithm computes the shortest paths from a source
node to all other nodes in the graph. However, unlike Dijkstra’s algorithm,
Bellman Ford algorithm can also work correctly in graphs containing nega-
tive weights. Although we do not have negative weights in our Minneapolis
map data, we decided to compare the run time of this algorithm with the
other two algorithms. The Bellman-Ford algorithm first constructs a Hash
Map from the nodes to their distances. The source distance is assigned to
0, while every other vertex distance is assigned to infinity. We also create a
temporary map so that we can flip back and forth between the result map
and the temporary map during each iteration of the algorithm, to avoid
needlessly reallocating maps. The total number of iterations is the size of
the graph minus one. For each iteration, we copy all of the mappings from
our result map to the temporary map since we assume that each node in the
iteration will have a cost equal to its cost on the previous iteration. Then
for each node in the graph, we scan across all edges and update the costs of
each node’s paths at their endpoints. By using Math.min function, we make
sure that the new cost of the shortest path to the current node is less than
or equal to the cost of the shortest path to the node’s neighbor plus the cost
of the edge from that neighbor into this node. At the end of each iteration,
we exchange the temporary map holding the new result with the result map
holding last iteration’s results. Finally, after we finish all the iterations, we
return the result map.Through this method, the Bellman-Ford algorithm

9



was implemented.

4 Experiment Design and Results

For the experiment, ten pairs of start-end nodes were chosen and tested on
all three algorithms to calculate the run times. A mixture of long and short
paths were chosen to ensure that the algorithm works correctly. The longest
path chosen has a distance of 4439.9 ((1384, 5051) → (1073, 9480)), while the
shortest path chosen has a distance of 530.4 ((1106, 7568) → (0581, 7492)).
A pair was also included where it should be impossible for the algorithms to
successfully find a path as the path does not exist ((0405, 7732) → (2925,
7406)). In the tables below, it can be seen that all algorithms return null
for path 7 since there is no path that leads from that start to end node.

Three trials for each algorithm were run and the averages was calcu-
lated for greater accuracy. Table 1 shows the ten paths and their respective
distances. Tables 2, 3 and 4 show the run times of the A*, Dijkstra, and
Bellman-Ford algorithms respectively from all three trials and their aver-
ages. A graph of distance versus run time for all three algorithms was also
plotted and shown in Figure 1.

Table 1: Paths
Path Start → End Nodes Distance

1 (1534, 7253) → (0, 6379) 1765.5

2 (1009, 10500) → (0202, 10252) 844.2

3 (1121, 7568) → (2224, 8426) 1397.4

4 (1042, 7545) → (690, 10500) 2975.9

5 (1384, 5051) → (1073, 9480) 4439.9

6 (1106, 7568) → (0581, 7492) 530.4

7 (0405, 7732) → (2925, 7406) 2541

8 (1174, 7954) → (1759, 7830) 598

9 (1522,7879) → (3041, 6544) 2022.3

10 (0994,5779) → (3075,7024) 2425

10



Table 2: A* Algorithm
Path Trial 1(ms) Trial 2(ms) Trial 3(ms) Average(ms)

1 7 7 7 7

2 5 5 5 5

3 19 21 21 20.3

4 11 11 10 10.7

5 24 25 23 24

6 5 4 4 4.3

7 null null null null

8 6 7 7 6.7

9 12 15 13 13.4

10 11 10 11 10.7

Table 3: Dijkstra’s Algorithm
Path Trial 1(ms) Trial 2(ms) Trial 3(ms) Average(ms)

1 16 15 21 17.3

2 6 6 7 6.3

3 30 31 30 30.3

4 45 47 47 46.3

5 61 59 60 60

6 3 3 2 2.7

7 null null null null

8 12 11 12 11.7

9 25 27 31 27.7

10 23 24 24 23.7

Table 4: Bellman-Ford Algorithm
Path Trial 1(ms) Trial 2(ms) Trial 3(ms) Average(ms)

1 21 20 21 20.7

2 13 12 12 12.3

3 57 54 58 56.3

4 27 33 32 30.7

5 79 81 72 77.3

6 15 17 17 16.3

7 null null null null

8 20 20 19 19.7

9 36 35 33 34.7

10 32 31 31 31.3

11



Table 5: Averages of all three algorithms
Path A* Dijkstra Bellman-Ford

1 7 17.3 20.7

2 5 6.3 12.3

3 20.3 30.3 56.3

4 10.7 46.3 30.7

5 24 60 77.3

6 4.3 2.7 16.3

7 null null null

8 6.7 11.7 19.7

9 13.4 27.7 34.7

10 10.7 23.7 31.3

Figure 2: Distance versus Run Time

5 Analysis

The performances of the three algorithms were tested on ten different paths.
As mentioned in the experimental design section, these paths were chosen
so that the Euclidean distances between some of them were short and some

12



of them were longer. The Euclidean distances of each of these paths was
calculated and noted in Table 1. From Table 2, it can be seen that the
run times for A* search for each of the paths remains consistent throughout
all of the trials. Similarity, Table 3 and Table 4 also show that the run
times are fairly consistent throughout all three trials for the Dijkstra and
Bellman-Ford algorithm. Before further analysis, it is important to note that
the paths were not numbered based on increasing distances between them.
Thus, Figure 2 was constructed in order to get a better visual representation
of the relationship between the distance between the start node and end node
and the run time.

As can be seen from Figure 1 and Table 5, the run time for path finding
was between 4.3-16.7 seconds for the paths that were tested for the A* search
algorithm. It had also correctly returned null for the path 7 since there does
not exist a path that leads from its start node to its end node. Based on the
results, though there seems to be a slight increasing relationship between the
distance and the run time of the paths, the run time was not always increas-
ing when the distance increased. This might have been because even though
the distances were larger for some paths, some might have required going
through several road segments while others did not require as many. When
it came to the Dijkstra algorithm the relationship between the distance and
the run time was stronger as can be seen from Figure 2. This algorithm
also returned null for a non-existing path. Furthermore, the run times for
path finding with the Dijkstra algorithm were higher than A* search run
times. The reason that the run times increased more drastically with the
Dijkstra algorithm is probably because this algorithm works best when the
goal nodes are closer to the start nodes. The reason for this behaviour is
because the Dijkstra algorithm terminates as soon as the destination node
is reached, and if that node is close to the start node, that means that com-
putation time is a lot quicker. Finally, the results show that the run times
from the Dijkstra algorithm are higher than the run times for the A* search
algorithm for all the paths. A* search is faster since it uses a best first search
approach and utilizes a heuristic. Dijkstra on the other hand uses a greedy
approach to searching, and does a blind search which is a disadvantage in
a data set such as the Minneapolis data since it is large. Finally, as can be
seen from Table 5 and Figure 2, the Bellman-Ford algorithm performed the
worst out of the three that were tested. Its run times were higher than the
Dijkstra and A* search algorithms for every path that was tested. However,
it did return the correct outputs such as returning null for a path that did
not exist. The Minneapolis road data also did not contain any negative
edge weights, and since the Bellman-Ford algorithm is designed to handle

13



negative edge weights, it performs worse than others in the situation where
all the edges are non-negative.

6 Conclusion

In conclusion, the performances of the A* search, Dijkstra, and the Bellman-
Ford algorithms were tested using the real road data of Minneapolis. The
experimental results showed that the A* search algorithm performed the
best out of all the algorithms that were tested. The Dijkstra algorithm came
in second, and the Bellman-Ford algorithm performed the worst. However,
the Dijkstra algorithm also has its advantages in that it was less complex to
program than A* search. And, though Bellman-Ford performed the worst,
if it was used with a data set that had negative edges, it could be a very
useful algorithm.

In terms of future work in this field, there are several interesting possibil-
ities that could be explored. First, the algorithms that were implemented in
this paper could be modified to perform more efficiently. For example, the
A* search algorithm could have has a better heuristic function. Or, it could
be modified in order to perform better such as the algorithms in [7], [4], or
[12]. Future work could include experiments that would be run in order to
determine how much better these modified algorithms are when compared
to the A* algorithm implemented in this paper. As learned from research
explored in the related work section of this paper, genetic algorithms are also
an area worthy of exploration for future work in the field of path finding
algorithms.

7 Contributions of team members

Siddeswari Thunuguntla: description of our approach to solve the problem
including algorithms details, related work, analysis of the results, conclu-
sion/summary and future work, A* and Dijkstras algorithm

Ren Xian Thian: abstract, introduction, related work, description of exper-
iment design and results, Dijkstras and Bellman-Ford algorithm

References

[1] H. M. Abu-Ryash and A. A. Tamimi. Comparison studies for different
shortest path algorithms.

14



[2] C. W. Ahn and R. S. Ramakrishna. A genetic algorithm for short-
est path routing problem and the sizing of populations. Evolutionary
Computation, IEEE Transactions on, 6(6):566–579, 2002.

[3] A. Ansari, M. A. Sayyed, K. Ratlamwala, and P. Shaikh. An optimized
hybrid approach for path finding. arXiv preprint arXiv:1504.02281,
2015.

[4] A. Botea, M. Müller, and J. Schaeffer. Near optimal hierarchical path-
finding. Journal of game development, 1(1):7–28, 2004.

[5] Y.-z. Chen, S.-f. Shen, T. Chen, and R. Yang. Path optimization study
for vehicles evacuation based on dijkstra algorithm. Procedia Engineer-
ing, 71:159–165, 2014.

[6] M. Gen, R. Cheng, and D. Wang. Genetic algorithms for solving short-
est path problems. In Evolutionary Computation, 1997., IEEE Inter-
national Conference on, pages 401–406. IEEE, 1997.

[7] A. V. Goldberg and C. Harrelson. Computing the shortest path: A
search meets graph theory. In Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 156–165. Society for
Industrial and Applied Mathematics, 2005.

[8] A. Ismail, A. Sheta, and M. Al-Weshah. A mobile robot path planning
using genetic algorithm in static environment. Journal of Computer
Science, 4(4):341–344, 2008.

[9] A. F. d. V. Machado, U. O. Santos, H. Vale, R. Gonçalvez, T. Neves,
L. S. Ochi, and E. W. G. Clua. Real time pathfinding with genetic
algorithm. In Games and Digital Entertainment (SBGAMES), 2011
Brazilian Symposium on, pages 215–221. IEEE, 2011.

[10] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm.
Partitioning graphs to speedup dijkstra’s algorithm. Journal of Exper-
imental Algorithmics (JEA), 11:2–8, 2007.

[11] M. Noto and H. Sato. A method for the shortest path search by ex-
tended dijkstra algorithm. In Systems, Man, and Cybernetics, 2000
IEEE International Conference on, volume 3, pages 2316–2320. IEEE,
2000.

15



[12] P. Su, Y. Li, Y. Li, and S. C.-K. Shiu. An auto-adaptive convex map
generating path-finding algorithm: genetic convex a*. International
Journal of Machine Learning and Cybernetics, 4(5):551–563, 2013.

[13] F. B. Zhan and C. E. Noon. Shortest path algorithms: an evaluation
using real road networks. Transportation Science, 32(1):65–73, 1998.

16


