
Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications

Ion Stoica �, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan
�

MIT Laboratory for Computer Science
chord@lcs.mit.edu

http://pdos.lcs.mit.edu/chord/

Abstract
A fundamentalproblemthatconfrontspeer-to-peerapplicationsis
to efficiently locatethenodethatstoresa particulardataitem. This
paperpresentsChord, a distributedlookupprotocolthataddresses
this problem.Chordprovidessupportfor just oneoperation:given
a key, it mapsthe key onto a node. Data location can be easily
implementedon top of Chordby associatinga key with eachdata
item, andstoring the key/dataitem pair at the nodeto which the
key maps. Chord adaptsefficiently as nodesjoin and leave the
system,andcananswerquerieseven if thesystemis continuously
changing. Resultsfrom theoreticalanalysis,simulations,andex-
perimentsshow that Chord is scalable,with communicationcost
andthestatemaintainedby eachnodescalinglogarithmicallywith
thenumberof Chordnodes.

1. Intr oduction
Peer-to-peersystemsand applicationsare distributed systems

withoutany centralizedcontrolor hierarchicalorganization,where
the software running at eachnodeis equivalent in functionality.
A review of the featuresof recentpeer-to-peerapplicationsyields
a long list: redundantstorage,permanence,selectionof nearby
servers, anonymity, search,authentication,andhierarchicalnam-
ing. Despitethis rich setof features,the coreoperationin most
peer-to-peersystemsis efficient locationof dataitems.Thecontri-
bution of this paperis a scalableprotocolfor lookupin a dynamic
peer-to-peersystemwith frequentnodearrivalsanddepartures.

The Chord protocol supportsjust one operation: given a key,
it mapsthe key onto a node. Dependingon the applicationusing
Chord,thatnodemightberesponsiblefor storingavalueassociated
with the key. Chord usesa variant of consistenthashing[11] to
assignkeys to Chordnodes.Consistenthashingtendsto balance
load, sinceeachnodereceivesroughly the samenumberof keys,
�
Universityof California,Berkeley. istoica@cs.berkeley.edu�
Authorsin reversealphabeticalorder.

This researchwassponsoredby the DefenseAdvancedResearch
ProjectsAgency (DARPA) andtheSpaceandNaval WarfareSys-
temsCenter, SanDiego,undercontractN66001-00-1-8933.

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
SIGCOMM’01,August27-31,2001,SanDiego,California,USA.
Copyright 2001ACM 1-58113-411-8/01/0008...$5.00.

and involves relatively little movementof keys when nodesjoin
andleave thesystem.

Previous work on consistenthashingassumedthat nodeswere
awareof mostothernodesin thesystem,makingit impracticalto
scaleto largenumberof nodes.In contrast,eachChordnodeneeds
“routing” informationaboutonly a few othernodes.Becausethe
routing table is distributed,a noderesolves the hashfunction by
communicatingwith a few other nodes. In the steadystate, in
an � -nodesystem,eachnodemaintainsinformation only about�����	��
 �
� othernodes,andresolvesall lookupsvia

�����	��
 ��� mes-
sagesto othernodes. Chordmaintainsits routing informationas
nodesjoin andleave the system;with high probability eachsuch
eventresultsin no morethan

�����	��
�� �
� messages.
ThreefeaturesthatdistinguishChordfrom many otherpeer-to-

peerlookupprotocolsareits simplicity, provablecorrectness,and
provableperformance.Chordis simple,routingakey throughase-
quenceof

��������
 ��� othernodestoward thedestination.A Chord
noderequiresinformationabout

�����	��
 ��� othernodesfor efficient
routing, but performancedegradesgracefullywhen that informa-
tion is outof date.This is importantin practicebecausenodeswill
join andleave arbitrarily, andconsistency of even

�����	��
 ��� state
maybehardto maintain.Onlyonepieceinformationpernodeneed
be correctin order for Chord to guaranteecorrect(thoughslow)
routing of queries;Chordhasa simplealgorithmfor maintaining
this informationin a dynamicenvironment.

The restof this paperis structuredasfollows. Section2 com-
paresChordto relatedwork. Section3 presentsthesystemmodel
that motivatesthe Chord protocol. Section4 presentsthe base
Chordprotocolandprovesseveralof its properties,while Section5
presentsextensionsto handleconcurrentjoins and failures. Sec-
tion 6 demonstratesourclaimsaboutChord’sperformancethrough
simulationandexperimentson a deployed prototype. Finally, we
outlineitemsfor futurework in Section7 andsummarizeour con-
tributionsin Section8.

2. RelatedWork
While Chord mapskeys onto nodes,traditional nameand lo-

cation servicesprovide a direct mappingbetweenkeys and val-
ues. A valuecanbe an address,a document,or an arbitrarydata
item. Chordcaneasilyimplementthisfunctionalityby storingeach
key/valuepair at thenodeto which thatkey maps.For this reason
andto makethecomparisonclearer, therestof thissectionassumes
a Chord-basedservicethatmapskeys ontovalues.

DNS providesa hostnameto IP addressmapping[15]. Chord
canprovide the sameservicewith the namerepresentingthe key
and the associatedIP addressrepresentingthe value. Chord re-
quiresno specialservers,while DNS relieson a setof specialroot

servers.DNSnamesarestructuredto reflectadministrative bound-
aries;� Chordimposesno namingstructure.DNS is specializedto
the taskof finding namedhostsor services,while Chordcanalso
beusedto find dataobjectsthatarenot tied to particularmachines.

The Freenetpeer-to-peerstoragesystem[4, 5], like Chord, is
decentralizedandsymmetricandautomaticallyadaptswhenhosts
leave and join. Freenetdoesnot assignresponsibilityfor docu-
mentsto specific servers; instead,its lookups take the form of
searchesfor cachedcopies.ThisallowsFreenetto provideadegree
of anonymity, but preventsit from guaranteeingretrieval of existing
documentsor from providing low boundsonretrieval costs.Chord
doesnot provide anonymity, but its lookup operationrunsin pre-
dictabletimeandalwaysresultsin successor definitive failure.

The Ohahasystemusesa consistenthashing-like algorithmfor
mappingdocumentsto nodes,andFreenet-stylequeryrouting[18].
As a result,it sharessomeof theweaknessesof Freenet.Archival
Intermemoryusesan off-line computedtree to map logical ad-
dressesto machinesthatstorethedata[3].

TheGlobesystem[2] hasawide-arealocationservicetomapob-
ject identifiersto the locationsof moving objects.Globearranges
theInternetasahierarchyof geographical,topological,or adminis-
trativedomains,effectively constructingastaticworld-widesearch
tree, much like DNS. Information aboutan object is storedin a
particular leaf domain, and pointer cachesprovide searchshort
cuts[22]. As pointedout by the authors,the searchtreedoesnot
scale,becausehigher-level nodesin thetreeserve largenumbersof
requestsandalsohave highstoragedemands.

The distributeddatalocationprotocoldevelopedby Plaxtonet
al. [19], a variantof which is usedin OceanStore[12], is perhaps
the closestalgorithmto the Chordprotocol. It provides stronger
guaranteesthanChord: like Chordit guaranteesthatqueriesmake
a logarithmicnumberhopsandthatkeysarewell balanced,but the
Plaxtonprotocol also ensures,subjectto assumptionsaboutnet-
work topology, thatqueriesnever travel furtherin network distance
than the nodewherethe key is stored. The advantageof Chord
is that it is substantiallylesscomplicatedandhandlesconcurrent
nodejoins andfailureswell. TheChordprotocolis alsosimilar to
Pastry, the locationalgorithmusedin PAST [8]. However, Pastry
is a prefix-basedroutingprotocol,anddiffers in otherdetailsfrom
Chord.

CAN usesa � -dimensionalCartesiancoordinatespace(for some
fixed �) to implementa distributedhashtablethatmapskeys onto
values[20]. Eachnodemaintains

��� ��� state,andthe lookupcost
is
��� ����������� . Thus,in contrastto Chord,thestatemaintainedby a

CAN nodedoesnot dependon thenetwork size � , but thelookup
costincreasesfasterthan

�	��
 � . If ��� �	��
 � , CAN lookuptimes
andstorageneedsmatchChord’s. However, CAN is not designed
to vary � as � (andthus

�	��
 �) varies,sothismatchwill onlyoccur
for the “right” � correspondingto the fixed � . CAN requiresan
additionalmaintenanceprotocolto periodicallyremaptheidentifier
spaceontonodes.Chordalsohastheadvantagethatits correctness
is robustin thefaceof partially incorrectroutinginformation.

Chord’s routing procedure may be thought of as a one-
dimensionalanalogueof theGrid locationsystem[14]. Grid relies
on real-world geographiclocationinformationto routeits queries;
Chordmapsits nodesto anartificial one-dimensionalspacewithin
which routingis carriedoutby analgorithmsimilar to Grid’s.

Chordcanbe usedasa lookup serviceto implementa variety
of systems,as discussedin Section3. In particular, it can help
avoid singlepointsof failure or control that systemslike Napster
possess[17], andthe lack of scalabilitythatsystemslike Gnutella
displaybecauseof their widespreaduseof broadcasts[10].

3. SystemModel
Chordsimplifiesthedesignof peer-to-peersystemsandapplica-

tionsbasedon it by addressingthesedifficult problems:

� Load balance: Chord actsas a distributed hashfunction,
spreadingkeys evenly over thenodes;this providesa degree
of naturalloadbalance.

� Decentralization: Chord is fully distributed: no node is
moreimportantthanany other. Thisimprovesrobustnessand
makesChordappropriatefor loosely-organizedpeer-to-peer
applications.

� Scalability: Thecostof a Chordlookupgrows asthelog of
thenumberof nodes,soevenvery largesystemsarefeasible.
No parametertuningis requiredto achieve thisscaling.

� Availability: Chordautomaticallyadjustsits internaltables
to reflectnewly joinednodesaswell asnodefailures,ensur-
ing that,barringmajorfailuresin theunderlyingnetwork, the
noderesponsiblefor a key canalwaysbefound. This is true
evenif thesystemis in acontinuousstateof change.

� Flexible naming: Chordplacesno constraintson thestruc-
tureof thekeys it looksup: theChordkey-spaceis flat. This
givesapplicationsa large amountof flexibility in how they
maptheir own namesto Chordkeys.

TheChordsoftwaretakestheform of a library to belinkedwith
the client andserver applicationsthat useit. The applicationin-
teractswith Chord in two main ways. First, Chord provides a
lookup(key) algorithmthat yields the IP addressof the node
responsiblefor thekey. Second,theChordsoftwareon eachnode
notifiestheapplicationof changesin thesetof keys that thenode
is responsiblefor. This allows theapplicationsoftwareto, for ex-
ample,movecorrespondingvaluesto theirnew homeswhenanew
nodejoins.

TheapplicationusingChordis responsiblefor providing any de-
siredauthentication,caching,replication,anduser-friendly naming
of data. Chord’s flat key spaceeasesthe implementationof these
features. For example,an applicationcould authenticatedataby
storingit undera Chordkey derivedfrom a cryptographichashof
thedata.Similarly, anapplicationcouldreplicatedataby storingit
undertwo distinctChordkeys derivedfrom thedata’s application-
level identifier.

The following are examplesof applicationsfor which Chord
would provide a goodfoundation:

Cooperative Mirr oring, as outlined in a recent proposal [6].
Imaginea setof softwaredevelopers,eachof whomwishes
to publishadistribution. Demandfor eachdistributionmight
vary dramatically, from very popularjust aftera new release
to relatively unpopularbetweenreleases.An efficient ap-
proachfor this would befor thedevelopersto cooperatively
mirror eachothers’distributions. Ideally, themirroring sys-
tem would balancethe loadacrossall servers,replicateand
cachethedata,andensureauthenticity. Suchasystemshould
be fully decentralizedin the interestsof reliability, andbe-
causethereis nonaturalcentraladministration.

Time-SharedStorage for nodeswith intermittentconnectivity. If
a personwishessomedatato be alwaysavailable,but their
machineisonly occasionallyavailable,they canoffer tostore
others’datawhile they areup, in returnfor having their data
storedelsewherewhenthey aredown. Thedata’s namecan

Server

Chord Chord Chord

File System

Block Store Block Store Block Store

Client Server

Figure 1: Structur e of an example Chord-based distrib uted
storagesystem.

serve asa key to identify the (live) Chordnoderesponsible
for storing the data item at any given time. Many of the
sameissuesariseas in the Cooperative Mirroring applica-
tion, thoughthefocushereis on availability ratherthanload
balance.

Distrib uted Indexes to supportGnutella-or Napster-likekeyword
search.A key in this applicationcouldbe derived from the
desiredkeywords, while valuescould be lists of machines
offering documentswith thosekeywords.

Lar ge-ScaleCombinatorial Search, suchas codebreaking. In
thiscasekeysarecandidatesolutionsto theproblem(suchas
cryptographickeys); Chordmapsthesekeys to themachines
responsiblefor testingthemassolutions.

Figure1 shows a possiblethree-layeredsoftwarestructurefor a
cooperative mirror system.Thehighestlayerwould provide a file-
likeinterfaceto users,includinguser-friendly namingandauthenti-
cation.This“file system”layermight implementnameddirectories
andfiles, mappingoperationson themto lower-level block opera-
tions. The next layer, a “block storage”layer, would implement
the block operations.It would take careof storage,caching,and
replicationof blocks. Theblock storagelayerwould useChordto
identify the noderesponsiblefor storinga block, andthentalk to
theblock storageserver on thatnodeto reador write theblock.

4. The BaseChord Protocol
TheChordprotocolspecifieshow to find the locationsof keys,

how new nodesjoin thesystem,andhow to recover from thefailure
(or planneddeparture)of existing nodes.This sectiondescribesa
simplified versionof the protocolthatdoesnot handleconcurrent
joinsor failures.Section5 describesenhancementsto thebasepro-
tocol to handleconcurrentjoinsandfailures.

4.1 Overview
At its heart,Chord provides fast distributed computationof a

hashfunctionmappingkeys to nodesresponsiblefor them.It uses
consistenthashing [11, 13], which has several good properties.
With high probability the hashfunction balancesload (all nodes
receive roughly the samenumberof keys). Also with high prob-
ability, whenan �
 �! nodejoins (or leaves) the network, only an���#"%$ ��� fraction of the keys aremoved to a different location—
this is clearlytheminimumnecessaryto maintaina balancedload.

Chord improves the scalabilityof consistenthashingby avoid-
ing therequirementthatevery nodeknow aboutevery othernode.
A Chord nodeneedsonly a small amountof “routing” informa-
tion aboutothernodes.Becausethis informationis distributed,a

0

6

1

2

3

4

5

6

7

1

2

successor(2) = 3

successor(6) = 0

successor(1) = 1

Figure 2: An identifier circle consistingof the thr eenodes0, 1,
and 3. In this example,key1 is locatedat node1, key2 at node
3, and key6 at node0.

noderesolvesthehashfunctionby communicatingwith afew other
nodes. In an � -nodenetwork, eachnodemaintainsinformation
only about

�����	��
 ��� othernodes,andalookuprequires
�����	��
 �
�

messages.
Chordmustupdatetheroutinginformationwhenanodejoinsor

leavesthenetwork; a join or leave requires
��������
 � ��� messages.

4.2 ConsistentHashing
Theconsistenthashfunctionassignseachnodeandkey an & -bit

identifier usinga basehashfunctionsuchasSHA-1 [9]. A node’s
identifier is chosenby hashingthenode’s IP address,while a key
identifier is producedby hashingthe key. We will usethe term
“key” to referto boththeoriginal key andits imageunderthehash
function,asthemeaningwill beclearfrom context. Similarly, the
term“node” will refer to both thenodeandits identifierunderthe
hashfunction. The identifier length & must be large enoughto
maketheprobabilityof two nodesor keyshashingto thesameiden-
tifier negligible.

Consistenthashingassignskeys to nodesasfollows. Identifiers
areorderedin an identifiercircle modulo '�(. Key) is assignedto
thefirst nodewhoseidentifier is equalto or follows (the identifier
of)) in theidentifierspace.Thisnodeis calledthesuccessornode
of key) , denotedby successor

�)�� . If identifiersarerepresentedas
a circle of numbersfrom * to ' (,+ " , then -%.0/1/324-5-36�7 �)�� is the
first nodeclockwisefrom) .

Figure2 shows an identifiercircle with &8�:9 . Thecircle has
threenodes:0, 1, and3. Thesuccessorof identifier1 is node1, so
key 1 wouldbelocatedatnode1. Similarly, key 2 wouldbelocated
at node3, andkey 6 atnode0.

Consistenthashingis designedto let nodesenterandleave the
network with minimal disruption.To maintaintheconsistenthash-
ing mappingwhena node ; joins thenetwork, certainkeys previ-
ouslyassignedto ; ’s successornow becomeassignedto ; . When
node ; leavesthe network, all of its assignedkeys arereassigned
to ; ’s successor. No otherchangesin assignmentof keys to nodes
needoccur. In theexampleabove, if anodewereto join with iden-
tifier 7, it would capturethe key with identifier 6 from the node
with identifier0.

The following resultsareproven in the papersthat introduced
consistenthashing[11, 13]:

THEOREM 1. For any setof � nodesand < keys, with high
probability:

1. Each nodeis responsiblefor at most
�#">=@? �#< $ � keys

2. Whenan
� � =A" �#B nodejoinsor leavesthenetwork,respon-

sibility for
��� < $ �
� keyschangeshands(andonlyto or from

thejoining or leavingnode).

Whenconsistenthashingis implementedasdescribedabove,the
theoremC provesa boundof

? � �����	��
 ��� . Theconsistenthashing
papershows that

?
canbe reducedto anarbitrarily small constant

by having eachnoderun
�����	��
 ��� “virtual nodes”eachwith its

own identifier.
The phrase“with high probability” bearssomediscussion. A

simpleinterpretationis that thenodesandkeys arerandomlycho-
sen,which is plausiblein a non-adversarialmodel of the world.
The probability distribution is then over randomchoicesof keys
andnodes,andsaysthat sucha randomchoiceis unlikely to pro-
duceanunbalanceddistribution. Onemightworry, however, about
anadversarywhointentionallychooseskeysto all hashto thesame
identifier, destroying the load balancingproperty. The consistent
hashingpaperuses“) -universalhashfunctions”to provide certain
guaranteesevenin thecaseof nonrandomkeys.

Ratherthanusinga) -universalhashfunction,we choseto use
thestandardSHA-1functionasourbasehashfunction.Thismakes
our protocoldeterministic,sothattheclaimsof “high probability”
nolongermakesense.However, producingasetof keysthatcollide
underSHA-1canbeseen,in somesense,asinverting,or “decrypt-
ing” theSHA-1 function. This is believed to behardto do. Thus,
insteadof statingthatour theoremshold with high probability, we
canclaimthatthey hold“basedonstandardhardnessassumptions.”

For simplicity (primarily of presentation),we dispensewith the
useof virtual nodes.In thiscase,theloadonanodemayexceedthe
averageby (at most)an

�����	��
 ��� factorwith high probability (or
in our case,basedon standardhardnessassumptions).Onereason
to avoid virtual nodesis that thenumberneededis determinedby
thenumberof nodesin thesystem,whichmaybedifficult to deter-
mine.Of course,onemaychooseto useanapriori upperboundon
thenumberof nodesin thesystem;for example,wecouldpostulate
at mostoneChordserver perIPv4 address.In this caserunning32
virtual nodesperphysicalnodewould provide goodloadbalance.

4.3 ScalableKeyLocation
A very small amountof routing informationsuffices to imple-

mentconsistenthashingin a distributedenvironment. Eachnode
needonly be aware of its successornodeon the circle. Queries
for a givenidentifiercanbepassedaroundthecircle via thesesuc-
cessorpointersuntil they first encountera nodethat succeedsthe
identifier;thisis thenodethequerymapsto. A portionof theChord
protocolmaintainsthesesuccessorpointers,thusensuringthatall
lookupsareresolvedcorrectly. However, this resolutionschemeis
inefficient: it may requiretraversingall � nodesto find the ap-
propriatemapping. To acceleratethis process,Chord maintains
additionalrouting information. This additionalinformationis not
essentialfor correctness,whichis achievedaslongasthesuccessor
informationis maintainedcorrectly.

As before,let & bethenumberof bitsin thekey/nodeidentifiers.
Eachnode, ; , maintainsa routing tablewith (at most) & entries,
calledthefinger table. The DE �! entryin thetableatnode; contains
theidentity of thefirst node, - , thatsucceeds; by at least '4FHGI� on
the identifier circle, i.e., -��J-3.K/L/324-5-36�7 � ; = ' F�GM� � , where

"�N
D N & (andall arithmeticis modulo ' (). We call node - the D �!
finger of node ; , anddenoteit by ;PO finger Q D�RHO node(seeTable1).
A finger tableentry includesboth the Chord identifier andthe IP
address(andport number)of therelevantnode.Note that thefirst
fingerof ; is its immediatesuccessoronthecircle; for convenience
we oftenreferto it asthesuccessorratherthanthefirst finger.

In theexampleshown in Figure3(b), thefinger tableof node
"

pointsto thesuccessornodesof identifiers
�#"S= '4T5� mod '4UV�:' ,�#"W= ' � � mod ' U �X9 , and

�#"W= ' � � mod ' U �JY , respectively.
Thesuccessorof identifier ' is node 9 , asthis is thefirst nodethat

Notation Definition
finger Q)�RHO -1Z#[�74Z � ; = '�\ GM� � mod ' (,

"]N) N &
O interval Q finger Q)�RHO start̂ finger Q) =_" REO start�
O ;`6���2 first node ab;PO finger Q)cRHO start

successor the next node on the identifier circle;
finger Q " RHO node

predecessor thepreviousnodeon theidentifiercircle

Table 1: Definition of variables for node ; , using & -bit identi-
fiers.

follows ' , thesuccessorof identifier 9 is (trivially) node 9 , andthe
successorof Y is node * .

This schemehastwo importantcharacteristics.First, eachnode
storesinformationaboutonly a small numberof othernodes,and
knowsmoreaboutnodescloselyfollowing it ontheidentifiercircle
thanaboutnodesfartheraway. Second,anode’s fingertablegener-
ally doesnot containenoughinformationto determinethesucces-
sorof anarbitrarykey) . For example,node3 in Figure3 doesnot
know thesuccessorof 1, as

"
’s successor(node1) doesnot appear

in node 9 ’s fingertable.
Whathappenswhena node ; doesnot know thesuccessorof a

key) ? If ; canfind a nodewhoseID is closerthanits own to) ,
that nodewill know moreaboutthe identifier circle in the region
of) than ; does. Thus ; searchesits finger tablefor the node d
whoseID mostimmediatelyprecedes) , andasksd for thenodeit
knows whoseID is closestto) . By repeatingthisprocess,; learns
aboutnodeswith IDs closerandcloserto) .

Thepseudocodethat implementsthesearchprocessis shown in
Figure 4. The notationn.foo() standsfor the function foo() be-
ing invokedat andexecutedon node ; . Remotecallsandvariable
referencesareprecededby the remotenodeidentifier, while local
variablereferencesandprocedurecallsomit the local node.Thus,
n.foo()denotesa remoteprocedurecall on node ; , n.bar, without
parentheses,is anRPCto lookupa variablebar on node ; , while
foo()denotesa local functioncall.

find successorworksby findingtheimmediatepredecessornode
of the desiredidentifier; the successorof that nodemust be the
successorof theidentifier. We implementfind predecessorexplic-
itly, becauseit is usedlater to implementthe join operation(Sec-
tion 4.4).

Whennode ; executesfind predecessor, it contactsa seriesof
nodesmoving forwardaroundtheChordcircle towardsDH� . If node
; contactsanode;`e suchthat DH� fallsbetween;`e andthesuccessor
of ; e , find predecessoris doneandreturns; e . Otherwisenode ;
asks; e for thenode; e knows aboutthatmostcloselyprecedesDH� .
Thusthealgorithmalwaysmakesprogresstowardstheprecedessor
of DH� .

As anexample,considertheChordring in Figure3(b). Suppose
node 9 wantsto find thesuccessorof identifier

"
. Since

"
belongs

to thecircularinterval Q f�^g9�� , it belongsto 9�O finger Q 94RHO interval; node
9 thereforechecksthe third entry in its finger table, which is * .
Because* precedes

"
, node 9 will asknode * to find thesuccessor

of
"
. In turn,node* will infer fromitsfingertablethat

"
’ssuccessor

is thenode
"

itself, andreturnnode1 to node3.
Thefingerpointersat repeatedlydoublingdistancesaroundthe

circle causeeachiterationof the loop in find predecessorto halve
the distanceto the target identifier. From this intuition follows a
theorem:

THEOREM 2. With high probability (or understandard hard-
nessassumptions),thenumberof nodesthat mustbecontactedto

0
1

2

3

4

5

6

7

finger[1].interval =
[finger[1].start,

finger[2].start)

finger[2].interval = [finger[2].start, finger[3].start)

finger[3].interval = [finger[3].start, 1)

finger[1].start = 2

finger[2].start = 3
finger[3].start = 5

(a)

0

1 [1,2) 1
2 [2,4) 3
4 [4,0) 0

start int. succ.
finger table keys

6

1

2

3

4

5

6

7 2 [2,3) 3
3 [3,5) 3
5 [5,1) 0

start int. succ.
finger table keys

1

4 [4,5) 0
5 [5,7) 0
7 [7,3) 0

start int. succ.
finger table keys

2

(b)

Figure3: (a) The finger intervals associatedwith node1. (b) Finger tablesand key locationsfor a net with nodes0, 1, and 3, and keys1, 2, and 6.

find a successorin an � -nodenetworkis
�����	��
 �
� .

PROOF. Supposethatnode ; wishesto resolve a queryfor the
successorof) . Let h bethenodethatimmediatelyprecedes) . We
analyzethenumberof querystepsto reachh .

Recall that if ;Xi�jh , then ; forwardsits query to the closest
predecessorof) in its fingertable.Supposethatnodeh is in the D �!
fingerinterval of node; . Thensincethisinterval is notempty, node
; will fingersomenode k in this interval. Thedistance(numberof
identifiers)between; and k is at least ' F�GM� . But k andh areboth
in ; ’s DE �! fingerinterval,whichmeansthedistancebetweenthemis
atmost '�F�GM� . Thismeansk is closerto h thanto ; , or equivalently,
that thedistancefrom k to h is at mosthalf thedistancefrom ; to
h .

If thedistancebetweenthenodehandlingthequeryandthepre-
decessorh halves in eachstep,and is at most ' (initially, then
within & stepsthedistancewill beone,meaningwe have arrived
at h .

In fact,asdiscussedabove,we assumethatnodeandkey identi-
fiersarerandom.In thiscase,thenumberof forwardingsnecessary
will be

��������
 ��� with high probability. After
�	��
 � forwardings,

thedistancebetweenthecurrentquerynodeandthekey) will be
reducedto at most ' ($ � . The expectednumberof nodeidenti-
fiers landing in a rangeof this size is 1, andit is

�����	��
 �
� with
highprobability. Thus,evenif theremainingstepsadvanceby only
onenodeata time,they will crosstheentireremaininginterval and
reachkey) within another

��������
 ��� steps.

In the sectionreportingour experimentalresults(Section6), we
will observe (andjustify) thattheaveragelookuptime is �� �	��
 � .

4.4 NodeJoins
In a dynamicnetwork, nodescan join (andleave) at any time.

Themainchallengein implementingtheseoperationsis preserving
theability to locateevery key in thenetwork. To achieve this goal,
Chordneedsto preserve two invariants:

1. Eachnode’s successoris correctlymaintained.

2. For every key) , node -3.K/1/12�-5-3647 �)�� is responsiblefor) .
In order for lookupsto be fast, it is also desirablefor the finger
tablesto becorrect.

This sectionshows how to maintaintheseinvariantswhena sin-
gle nodejoins. We deferthediscussionof multiple nodesjoining
simultaneouslyto Section5, which alsodiscusseshow to handle
a nodefailure. Beforedescribingthe join operation,we summa-
rize its performance(theproof of this theoremis in thecompanion
technicalreport[21]):

// asknodel to find mon ’s successorlIp qIrKs t1uKv5v%w�tgtyx�z4{|m�n4}l eK~ find predecessor{�m�n4} ;
return l e p successor;

// asknodel to find mon ’s predecessorlIp qIrKs ��z1w�sKw�v%w�tgtyx�z�{�m�n4}l e ~ l ;
while {|m�n��� {|l e�� l e p successor��}l eK~ l e p closestprecedingfinger {�m�n4} ;
return l e ;

// returnclosestfinger precedingm�nlIp v4�	x�tyw�ty� ��z1w�v%w�s`��r0� qIr0��w�z�{�m�n4}
for m ~�� downto �

if { finger � m|��p node
� {�l � m�n4}�}

return finger � m|��p node;
return l ;

Figure4: The pseudocodeto find the successornodeof an iden-
tifier DH� . Remoteprocedurecalls and variable lookups are pre-
cededby the remotenode.

THEOREM 3. With high probability, anynodejoining or leav-
ing an � -nodeChord networkwill use

�����	��
 � ��� messages to
re-establishtheChord routinginvariantsandfinger tables.

To simplify the join andleave mechanisms,eachnodein Chord
maintainsapredecessorpointer. A node’spredecessorpointercon-
tainstheChordidentifierandIP addressof theimmediatepredeces-
sorof thatnode,andcanbeusedto walk counterclockwisearound
theidentifiercircle.

To preserve the invariantsstatedabove, Chord must perform
threetaskswhena node; joins thenetwork:

1. Initialize thepredecessorandfingersof node; .

2. Updatethefingersandpredecessorsof existing nodesto re-
flect theadditionof ; .

3. Notify the higherlayer softwareso that it cantransferstate
(e.g.values)associatedwith keys thatnode; is now respon-
siblefor.

We assumethat the new nodelearnsthe identity of an existing
Chordnode ; e by someexternalmechanism.Node ; uses; e to
initialize its stateandadditself to the existing Chordnetwork, as
follows.

Initializing fingers and predecessor: Node ; learns its pre-
decessorand fingers by asking ; e to look them up, using the

0

1 [1,2) 1
2 [2,4) 3
4 [4,0) 6

start int. succ.
finger table keys

1

2

3

4

5

6

7 2 [2,3) 3
3 [3,5) 3
5 [5,1) 6

start int. succ.
finger table keys

1

4 [4,5) 6
5 [5,7) 6
7 [7,3) 0

start int. succ.
finger table keys

2

7 [7,0) 0
0 [0,2) 0
2 [2,6) 3

start int. succ.
finger table keys

6

(a)

0

1 [1,2) 0
2 [2,4) 3
4 [4,0) 6

start int. succ.
finger table keys

1

2

3

4

5

6

7

4 [4,5) 6
5 [5,7) 6
7 [7,3) 0

start int. succ.
finger table keys

1

7 [7,0) 0
0 [0,2) 0
2 [2,6) 3

start int. succ.
finger table keys

6

2

(b)

Figure 5: (a) Finger tablesand key locationsafter node6 joins. (b) Finger tablesand key locationsafter node3 leaves. Changedentries are shown
in black, and unchangedin gray.

init finger table pseudocodein Figure 6. Naively performing
find successorfor eachof the & finger entrieswould give a run-
time of

��� & �	��
 ��� . To reducethis, ; checkswhetherthe DE �!
finger is also the correct

� D =�" � �! finger, for each D . This hap-
penswhenfinger Q D�RHO interval doesnot containany node,and thus
finger Q D�RHO node a finger Q D =�" RHO start. It canbeshown thatthechange
reducesthe expected(andhigh probability) numberof finger en-
triesthatmustbelookedupto

�����	��
 ��� , whichreducestheoverall
time to

��������
 � ��� .
As a practicaloptimization,a newly joined node ; canaskan

immediateneighborfor a copy of its completefinger tableandits
predecessor. ; canusethecontentsof thesetablesashints to help
it find thecorrectvaluesfor its own tables,since ; ’s tableswill be
similar to its neighbors’.This canbeshown to reducethe time to
fill thefingertableto

�����	��
 ��� .
Updating fingers of existing nodes: Node ; will needto be en-
teredinto thefingertablesof someexistingnodes.For example,in
Figure5(a),node6 becomesthethird fingerof nodes0 and1, and
thefirst andthesecondfingerof node3.

Figure6 shows thepseudocodeof theupdatefinger table func-
tion thatupdatesexistingfingertables.Node ; will becomethe DE �!
fingerof nodeh if andonly if (1) h precedes; by at least' FHGI� , and
(2) the D �! fingerof nodeh succeeds; . Thefirst node,h , thatcan
meetthesetwo conditionsis theimmediatepredecessorof ; + ' FHGI� .
Thus,for agiven ; , thealgorithmstartswith the DE �! fingerof node
; , andthencontinuesto walk in the counter-clock-wisedirection
on the identifier circle until it encountersa nodewhose D �! finger
precedes; .

We show in the technicalreport [21] that the numberof nodes
thatneedto beupdatedwhenanodejoinsthenetwork is

�����	��
 ���
with high probability. Finding and updatingthesenodestakes�����	��
 � ��� time. A moresophisticatedschemecanreducethistime
to
�����	��
 �
� ; however, wedonotpresentit asweexpectimplemen-

tationsto usethealgorithmof thefollowing section.

Transferring keys: The last operationthat hasto be performed
whena node ; joins the network is to move responsibilityfor all
thekeys for which node ; is now thesuccessor. Exactlywhat this
entailsdependson thehigher-layersoftwareusingChord,but typi-
cally it would involve moving thedataassociatedwith eachkey to
thenew node.Node ; canbecomethesuccessoronly for keys that
werepreviously theresponsibilityof thenodeimmediatelyfollow-
ing ; , so ; only needsto contactthatonenodeto transferrespon-
sibility for all relevantkeys.

#define successorfinger � ����p node

// nodel joins thenetwork;
// l e is anarbitrary nodein thenetworklIp �yx���r�{|l e }

if (l e)
init finger table(l e);
updateothers();
// movekeys in { �c�%�1n5�1�y�1�1�L�L� � l�� fromsuccessor

else// l is theonlynodein thenetwork
for m ~ � to �

finger � m|��p node ~ l ;
predecessor~ l ;

// initialize finger tableof local node;
// l e is anarbitrary nodealreadyin thenetworklIp ��r��	� qIr0��w�z �L���`��w�{|l e }

finger � ����p node ~ l e p find successor{���mol����g��� ����p �g�H�5�3�E} ;
predecessor~ successorp predecessor;
successorp predecessor~ l ;
for m ~ � to ��� �

if { finger � m�������p start
� � l � finger � m|��p node}E}

finger � m�������p node ~ finger � m���p node
else

finger � m�������p node ~l e p find successor{ finger � m�������p start} ;

// updateall nodeswhosefinger
// tablesshouldreferto llIp uK��sK���Lw xc�3¡0w�z1t%{o}

for m ~ � to �
// find lastnode� whosem �! finger mightbe l
� ~ find predecessor{�l �£¢ FHGI� } ;�Kp updatefinger table{�l � mH} ;

// if � is m �! finger of l , updatel ’s finger tablewith �lIp uK��sK���Lw qIr0��w�z �L���`��wc{o� � mH}
if {�� � � l � finger � m|��p node}�}

finger � m|��p node ~ � ;� ~ predecessor; // get first nodeprecedingl�Kp updatefinger table{o� � mH} ;

Figure6: Pseudocodefor the nodejoin operation.

l�p �yx��|r�{�l e }�c�%�1n5�1�y�1�1�L�L� ~ r���� ;�g¤��y�y�3�1�g�1� ~ l e p find successor{�l�} ;
// periodicallyverify n’s immediatesuccessor,
// andtell thesuccessoraboutn.l .stabilize()¥ ~ �g¤��y�y�3�L�L�1�3p �c�%�Ln4�L�y�3�1�g�1� ;

if { ¥ � {|l � �y¤��y�y�3�L�L�1�%}�}�y¤��y�y�3�L�L�1� ~ ¥ ;�g¤��y�y�3�1�g�1�3p notify{�l�} ;
// l e thinksit mightbeour predecessor.l�p r0xc�%�	¦�§I{�l e }

if {�¨�©�ª¬«4ª¬­#ªL®#®#¯5© is nil or l e � { �c�%�Ln5�1�y�3�L�L�1� � lK}�}�c�%�Ln4�L�y�3�1�g�1� ~ l e ;
// periodicallyrefreshfinger tableentries.l�p q`° qIr0��w�z3t%{�}m ~ randomindex ±²� into finger � � ;

finger � m|��p lK�1n4� ~ find successor{ finger � m|��p start} ;

Figure7: Pseudocodefor stabilization.

5. Concurrent Operationsand Failur es
In practiceChordneedsto dealwith nodesjoining the system

concurrentlyand with nodesthat fail or leave voluntarily. This
sectiondescribesmodificationsto the basicChordalgorithmsde-
scribedin Section4 to handlethesesituations.

5.1 Stabilization
Thejoin algorithmin Section4 aggressively maintainsthefinger

tablesof all nodesasthe network evolves. Sincethis invariant is
difficult to maintainin the faceof concurrentjoins in a large net-
work, we separateour correctnessandperformancegoals.A basic
“stabilization” protocol is usedto keepnodes’successorpointers
up to date,which is sufficient to guaranteecorrectnessof lookups.
Thosesuccessorpointersare then usedto verify andcorrectfin-
ger tableentries,which allows theselookupsto be fastaswell as
correct.

If joining nodeshave affectedsomeregion of the Chord ring,
a lookup that occursbeforestabilizationhasfinishedcanexhibit
oneof threebehaviors. Thecommoncaseis thatall thefinger ta-
ble entriesinvolved in the lookup arereasonablycurrent,andthe
lookupfinds thecorrectsuccessorin

�����	��
 ��� steps.Thesecond
caseis wheresuccessorpointersarecorrect,but fingersareinaccu-
rate. This yields correctlookups,but they may be slower. In the
final case,thenodesin theaffectedregionhave incorrectsuccessor
pointers,or keysmaynotyethave migratedto newly joinednodes,
and the lookup may fail. The higher-layer softwareusingChord
will noticethat thedesireddatawasnot found,andhastheoption
of retryingthelookupaftera pause.This pausecanbeshort,since
stabilizationfixessuccessorpointersquickly.

Ourstabilizationschemeguaranteesto addnodesto aChordring
in a way thatpreservesreachabilityof existing nodes,even in the
faceof concurrentjoins and lost andreorderedmessages.Stabi-
lization by itself won’t correcta Chordsystemthat hassplit into
multiple disjoint cycles,or a singlecycle that loopsmultiple times
aroundthe identifier space. Thesepathologicalcasescannotbe
producedby any sequenceof ordinary node joins. It is unclear
whetherthey canbeproducedby network partitionsandrecoveries
or intermittentfailures.If produced,thesecasescouldbedetected
andrepairedby periodicsamplingof thering topology.

Figure7 shows thepseudo-codefor joins andstabilization;this

codereplacesFigure6 to handleconcurrentjoins. Whennode ;
first starts,it calls ;PO join

� ; e � , where ; e is any known Chordnode.
The d�64DH; functionasks; e to find theimmediatesuccessorof ; . By
itself, d�6�DH; doesnotmake therestof thenetwork awareof ; .

Every noderunsstabilizeperiodically(this is how newly joined
nodesarenoticedby the network). Whennode ; runsstabilize,
it asks ; ’s successorfor the successor’s predecessorh , and de-
cideswhetherh shouldbe ; ’s successorinstead. This would be
the caseif nodeh recentlyjoined the system. stabilizealsonoti-
fies node ; ’s successorof ; ’s existence,giving the successorthe
chanceto changeits predecessorto ; . Thesuccessordoesthisonly
if it knows of no closerpredecessorthan ; .

As a simpleexample,supposenode ; joins thesystem,andits
ID liesbetweennodes;K³ and ; B . ; wouldacquire; B asits succes-
sor. Node ; B , whennotifiedby ; , would acquire; asits predeces-
sor. When ; ³ next runsstabilize, it will ask ; B for its predecessor
(whichis now ;); ;K³ wouldthenacquire; asits successor. Finally,
; ³ will notify ; , and ; will acquire; ³ asits predecessor. At this
point,all predecessorandsuccessorpointersarecorrect.

As soon as the successorpointers are correct, calls to
find predecessor(andthusfind successor) will work. Newly joined
nodesthathavenotyetbeenfingeredmaycausefind predecessorto
initially undershoot,but theloop in thelookupalgorithmwill nev-
erthelessfollow successor(finger Q " R) pointersthroughthe newly
joined nodesuntil the correctpredecessoris reached.Eventually
fix fingers will adjustfinger tableentries,eliminatingtheneedfor
theselinearscans.

The following theorems(proved in the technicalreport [21])
show that all problemscausedby concurrentjoins are transient.
The theoremsassumethat any two nodestrying to communicate
will eventuallysucceed.

THEOREM 4. Once a node can successfullyresolvea given
query, it will alwaysbeableto do soin thefuture.

THEOREM 5. At sometime after the last join all successor
pointers will becorrect.

Theproofsof thesetheoremsrely on aninvariantanda termina-
tion argument.Theinvariantstatesthatoncenode; canreachnode
7 via successorpointers,it alwayscan. To arguetermination,we
considerthe casewheretwo nodesboth think they have thesame
successor- . In this case,eachwill attemptto notify - , and - will
eventuallychoosethecloserof thetwo (or someother, closernode)
asits predecessor. At this point thefartherof thetwo will, by con-
tacting - , learnof a bettersuccessorthan - . It follows that every
nodeprogressestowardsa betterandbettersuccessorover time.
This progressmusteventuallyhalt in a statewhereevery nodeis
consideredthesuccessorof exactly oneothernode;this definesa
cycle (or setof them,but theinvariantensuresthattherewill beat
mostone).

Wehavenotdiscussedtheadjustmentof fingerswhennodesjoin
becauseit turnsout that joins don’t substantiallydamagethe per-
formanceof fingers.If a nodehasa finger into eachinterval, then
thesefingerscanstill beusedevenafterjoins. Thedistancehalving
argumentis essentiallyunchanged,showing that

��������
 ��� hops
suffice to reacha node“close” to a query’s target. New joins in-
fluencethelookuponly by gettingin betweentheold predecessor
andsuccessorof a targetquery. Thesenew nodesmayneedto be
scannedlinearly (if their fingersarenot yetaccurate).But unlessa
tremendousnumberof nodesjoinsthesystem,thenumberof nodes
betweentwo old nodesis likely to bevery small,sotheimpacton
lookupis negligible. Formally, we canstatethefollowing:

THEOREM 6. If we take a stablenetworkwith � nodes,and
another´ setof upto � nodesjoinsthenetworkwith nofinger point-
ers(but with correctsuccessorpointers),thenlookupswill still take�����	��
 ��� timewith highprobability.

More generally, so long asthe time it takesto adjustfingersis
lessthanthe time it takes the network to doublein size, lookups
shouldcontinueto take

��������
 ��� hops.

5.2 Failur esand Replication
Whena node ; fails, nodeswhosefinger tablesinclude ; must

find ; ’ssuccessor. In addition,thefailureof ; mustnotbeallowed
to disruptqueriesthatarein progressasthesystemis re-stabilizing.

The key stepin failure recovery is maintainingcorrectsucces-
sor pointers,since in the worst casefind predecessorcan make
progressusingonly successors.To help achieve this, eachChord
nodemaintainsa “successor-list” of its 7 nearestsuccessorson the
Chordring. In ordinaryoperation,a modifiedversionof thestabi-
lize routinein Figure7 maintainsthesuccessor-list. If node ; no-
ticesthatits successorhasfailed,it replacesit with thefirst liveen-
try in its successorlist. At thatpoint, ; candirectordinarylookups
for keys for which the failed nodewas the successorto the new
successor. As timepasses,stabilizewill correctfingertableentries
andsuccessor-list entriespointingto thefailednode.

After anodefailure,but beforestabilizationhascompleted,other
nodesmayattemptto sendrequeststhroughthefailednodeaspart
of a find successorlookup. Ideally the lookupswould be able to
proceed,after a timeout, by anotherpath despitethe failure. In
many casesthis is possible.All that is neededis a list of alternate
nodes,easilyfoundin thefingertableentriesprecedingthatof the
failed node. If the failed nodehada very low finger table index,
nodesin thesuccessor-list arealsoavailableasalternates.

The technical report proves the following two theoremsthat
show thatthesuccessor-list allows lookupsto succeed,andbeeffi-
cient,evenduringstabilization[21]:

THEOREM 7. If weusea successorlist of length 7]� �����	��
 ���
in a networkthat is initially stable, andtheneverynodefails with
probability 1/2, then with high probability find successorreturns
theclosestliving successorto thequerykey.

THEOREM 8. If weusea successorlist of length 7]� �����	��
 ���
in a networkthat is initially stable, andtheneverynodefails with
probability 1/2, thentheexpectedtimeto executefind successorin
thefailednetworkis

�����	��
 �
� .
The intuition behindtheseproofs is straightforward: a node’s 7
successorsall fail with probability ' GKµ � "%$ � , sowith highprob-
ability a nodewill beawareof, soableto forwardmessagesto, its
closestliving successor.

The successor-list mechanismalsohelpshigher layer software
replicatedata.A typicalapplicationusingChordmight storerepli-
casof thedataassociatedwith a key at the) nodessucceedingthe
key. The fact that a Chord nodekeepstrack of its 7 successors
meansthatit caninform thehigherlayersoftwarewhensuccessors
comeandgo, and thus whenthe software shouldpropagatenew
replicas.

6. Simulation and Experimental Results
In this section,we evaluatethe Chord protocol by simulation.

Thesimulatorusesthelookupalgorithmin Figure4 anda slightly
olderversionof thestabilizationalgorithmsdescribedin Section5.
We alsoreporton somepreliminaryexperimentalresultsfrom an
operationalChord-basedsystemrunningon Internethosts.

0

50

100

150

200

250

300

350

400

450

500

1 10

N
um

be
r

of
 k

ey
s

pe
r

no
de

¶

Number of virtual nodes

1st and 99th percentiles

Figure 9: The 1st and the 99th percentiles of the number of
keysper node as a function of virtual nodesmapped to a real
node.The network has

" *�· real nodesand stores
" *�¸ keys.

6.1 Protocol Simulator
TheChordprotocolcanbeimplementedin an iterativeor recur-

sivestyle. In theiterative style,a noderesolvinga lookupinitiates
all communication:it asksa seriesof nodesfor informationfrom
theirfingertables,eachtimemoving closerontheChordring to the
desiredsuccessor. In the recursive style, eachintermediatenode
forwardsa requestto the next nodeuntil it reachesthe successor.
Thesimulatorimplementstheprotocolsin aniterative style.

6.2 Load Balance
Wefirst considertheability of consistenthashingto allocatekeys

to nodesevenly. In a network with � nodesand < keys we would
like thedistributionof keys to nodesto betight around� $ < .

We considera network consistingof
" * · nodes,and vary the

total numberof keys from
" *�¹ to

" * ¸ in incrementsof
" *�¹ . For

eachvalue,we repeatthe experiment20 times. Figure8(a) plots
themeanandthe1stand99thpercentilesof thenumberof keysper
node. The numberof keys per nodeexhibits large variationsthat
increaselinearlywith thenumberof keys. For example,in all cases
somenodesstoreno keys. To clarify this, Figure 8(b) plots the
probabilitydensityfunction(PDF)of thenumberof keys pernode
whenthereare Y»º " *�¹ keys storedin thenetwork. Themaximum
numberof nodesstoredby any nodein thiscaseis 457,or ¼�O " º the
meanvalue.For comparison,the99thpercentileis ½�O ¾�º themean
value.

Onereasonfor thesevariationsis thatnodeidentifiersdonotuni-
formly cover theentireidentifierspace.If we divide the identifier
spacein � equal-sizedbins,where� is thenumberof nodes,then
we might hopeto seeonenodein eachbin. But in fact,theproba-
bility thataparticularbin doesnotcontainany nodeis

�#" + "%$ ����¿ .
For largevaluesof � this approaches2 GM� �_*�O 9�¾�À .

As we discussedearlier, theconsistenthashingpapersolvesthis
problemby associatingkeys with virtual nodes,andmappingmul-
tiple virtual nodes(with unrelatedidentifiers) to eachreal node.
Intuitively, this will provide a moreuniform coverageof the iden-
tifier space.For example,if we allocate

�	��
 � randomlychosen
virtual nodesto eachreal node,with high probability eachof the
� binswill contain

�����	��
 �
� nodes[16]. We notethat this does
not affect the worst-casequerypath length,which now becomes�����	��
`� � ����
 �����Á� �����	��
 �
� .

To verify this hypothesis,we perform an experimentin which
we allocate 7 virtual nodesto eachreal node. In this casekeys
areassociatedto virtual nodesinsteadof real nodes.We consider
againa network with

" *�· realnodesand
" *�¸ keys. Figure9 shows

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

N
um

be
r

of
 k

ey
s

pe
r

no
de

Â

Total number of keys (x 10,000)

1st and 99th percentiles

(a)

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300 350 400 450 500

P
D

FÃ

Number of keys per node

(b)

Figure8: (a) The meanand 1stand 99th percentilesof the number of keysstoredper nodein a
" * · nodenetwork. (b) The probability

density function (PDF) of the number of keysper node.The total number of keysis Y»º " * ¹ .

the 1st and 99th percentilesfor 7Ä� " ^g'c^LY�^ " * , and 20, respec-
tively. As expected,the 99th percentiledecreases,while the 1st
percentileincreaseswith the numberof virtual nodes,7 . In par-
ticular, the99thpercentiledecreasesfrom ½�O À�º to

" O ¾�º themean
value,while the1stpercentileincreasesfrom 0 to *�O Y�º themean
value. Thus,addingvirtual nodesasan indirectionlayercansig-
nificantly improve loadbalance.The tradeoff is that routing table
spaceusagewill increaseaseachactualnodenow needs7 timesas
muchspaceto storethefingertablesfor its virtual nodes.However,
we believe that this increasecanbeeasilyaccommodatedin prac-
tice. For example,assuminga network with �Å� " * ¸ nodes,and
assuming7Æ� ����
 � , eachnodehasto maintaina tablewith only�	��
0� �ÈÇÉ½�*�* entries.

6.3 Path Length
Theperformanceof any routingprotocoldependsheavily on the

length of the path betweentwo arbitrary nodesin the network.
In the context of Chord,we definethe pathlengthasthe number
of nodestraversedduring a lookup operation. From Theorem2,
with high probability, the lengthof the path to resolve a query is�����	��
 ��� , where � is thetotal numberof nodesin thenetwork.

To understandChord’s routingperformancein practice,we sim-
ulateda network with �Ê�J'�\ nodes,storing

" *�*
º²'�\ keys in
all. Wevaried) from 9 to

" ½ andconductedaseparateexperiment
for eachvalue. Eachnodein an experimentpicked a randomset
of keys to queryfrom thesystem,andwemeasuredthepathlength
requiredto resolve eachquery.

Figure10(a)plots themean,andthe1stand99thpercentilesof
pathlengthasa functionof) . As expected,themeanpathlength
increaseslogarithmicallywith the numberof nodes,asdo the 1st
and99thpercentiles.Figure10(b)plotsthePDFof thepathlength
for a network with ' � � nodes()Æ� " ').

Figure10(a)shows that thepathlengthis about �� ����
 � � . The
reasonfor the �� is as follows. Considersomerandomnodeand
a randomquery. Let thedistancein identifierspacebeconsidered
in binary representation.Themostsignificant(say D �!) bit of this
distancecanbe correctedto 0 by following the node’s D� o! finger.
If the next significantbit of the distanceis 1, it too needsto be
correctedby following a finger, but if it is 0, thenno D + " B finger
is followed—instead,wemoveonthethe D + '�Ë � bit. In general,the
numberof fingerswe needto follow will bethenumberof onesin
thebinaryrepresentationof thedistancefrom nodeto query. Since
thedistanceis random,we expecthalf the

�	��
 � bits to beones.

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2

F
ai

le
d

Lo
ok

up
s

(F
ra

ct
io

n
of

 T
ot

al
)

Failed Nodes (Fraction of Total)

95% confidence interval

Figure11: The fraction of lookups that fail asa function of the
fraction of nodesthat fail.

6.4 SimultaneousNodeFailur es
In this experiment,we evaluatethe ability of Chord to regain

consistency after a large percentageof nodesfail simultaneously.
We consideragaina

" * · nodenetwork that stores
" * ¸ keys, and

randomlyselecta fraction h of nodesthat fail. After the failures
occur, we wait for thenetwork to finish stabilizing,andthenmea-
surethe fraction of keys that couldnot be looked up correctly. A
correctlookup of a key is onethat finds the nodethat wasorigi-
nally responsiblefor thekey, beforethe failures;this corresponds
to a systemthat storesvalueswith keys but doesnot replicatethe
valuesor recover themafterfailures.

Figure11 plotsthemeanlookupfailurerateandthe95%confi-
denceinterval asa functionof h . Thelookupfailurerateis almost
exactly h . Sincethis is just thefractionof keys expectedto belost
dueto the failureof theresponsiblenodes,we concludethat there
is nosignificantlookupfailurein theChordnetwork. For example,
if theChordnetwork hadpartitionedin two equal-sizedhalves,we
would expect one-halfof the requeststo fail becausethe querier
and target would be in differentpartitionshalf the time. Our re-
sultsdo not show this, suggestingthatChordis robust in the face
of multiple simultaneousnodefailures.

6.5 Lookups During Stabilization
A lookup issuedafter somefailuresbut beforestabilizationhas

completedmayfail for two reasons.First, thenoderesponsiblefor

0

2

4

6

8

10

12

1 10 100 1000 10000 100000

P
at

h
le

ng
th

Number of nodes

1st and 99th percentiles

(a)

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

P
D

FÃ

Path length

(b)

Figure10: (a) The path length asa function of network size.(b) The PDF of the path length in the caseof a ' � � nodenetwork.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.02 0.04 0.06 0.08 0.1

F
ai

le
d

Lo
ok

up
s

(F
ra

ct
io

n
of

 T
ot

al
)

Ì

Node Fail/Join Rate (Per Second)

95% confidence interval

Figure 12: The fraction of lookups that fail as a function of
the rate (over time) at which nodesfail and join. Only failur es
causedby Chord state inconsistencyare included, not failur es
due to lost keys.

the key may have failed. Second,somenodes’finger tablesand
predecessorpointersmay be inconsistentdue to concurrentjoins
andnodefailures.This sectionevaluatestheimpactof continuous
joinsandfailureson lookups.

In this experiment,a lookup is consideredto have succeededif
it reachesthecurrentsuccessorof thedesiredkey. This is slightly
optimistic: in arealsystem,theremightbeperiodsof timein which
therealsuccessorof a key hasnot yet acquiredthedataassociated
with thekey from theprevioussuccessor. However, thismethodal-
lows usto focuson Chord’s ability to performlookups,ratherthan
on thehigher-layersoftware’s ability to maintainconsistency of its
own data.Any queryfailurewill betheresultof inconsistenciesin
Chord. In addition,thesimulatordoesnot retry queries:if a query
is forwardedto a nodethat is down, thequerysimply fails. Thus,
the resultsgiven in this sectioncan be viewed as the worst-case
scenariofor thequeryfailuresinducedby stateinconsistency.

Becausethe primary sourceof inconsistenciesis nodesjoining
andleaving, andbecausethemainmechanismto resolve thesein-
consistenciesis thestabilizeprotocol,Chord’sperformancewill be
sensitive to the frequency of nodejoins andleavesversusthe fre-
quency atwhich thestabilizationprotocolis invoked.

In this experiment,key lookups are generatedaccordingto a
Poissonprocessat a rate of one per second. Joinsand failures
aremodeledby a Poissonprocesswith themeanarrival rateof Í .

Eachnoderuns the stabilizationroutinesat randomizedintervals
averaging30seconds;unliketheroutinesin Figure7, thesimulator
updatesall finger tableentrieson every invocation. The network
startswith 500nodes.

Figure12plotstheaveragefailureratesandconfidenceintervals.
A nodefailure rateof *�O * " correspondsto onenodejoining and
leaving every 100secondson average.For comparison,recall that
eachnodeinvokes the stabilizeprotocol onceevery 30 seconds.
In other words, the graph Î axis rangesfrom a rate of 1 failure
per3 stabilizationstepsto a rateof 3 failuresperonestabilization
step.Theresultspresentedin Figure12 areaveragedover approx-
imately two hoursof simulatedtime. Theconfidenceintervalsare
computedover 10 independentruns.

Theresultsof figure12canbeexplainedroughlyasfollows. The
simulationhas500 nodes,meaninglookup path lengthsaverage
aroundY . A lookupfails if its fingerpathencountersa failednode.
If) nodesfail, theprobabilitythatoneof themis onthefingerpath
is roughly Y4) $ Y�*�* , or) $c" *�* . This would suggesta failurerateof
about 9 % if we have 3 failuresbetweenstabilizations.Thegraph
showsresultsin thisball-park,but slightly worsesinceit mighttake
morethanonestabilizationto completelyclearouta failednode.

6.6 Experimental Results
Thissectionpresentslatency measurementsobtainedfrom apro-

totype implementationof Chord deployed on the Internet. The
Chord nodesare at ten sites on a subsetof the RON test-bed
in the United States[1], in California, Colorado,Massachusetts,
New York, NorthCarolina,andPennsylvania.TheChordsoftware
runson UNIX, uses160-bit keys obtainedfrom the SHA-1 cryp-
tographichashfunction, andusesTCP to communicatebetween
nodes. Chord runs in the iterative style. TheseChordnodesare
partof anexperimentaldistributedfile system[7], thoughthis sec-
tion considersonly theChordcomponentof thesystem.

Figure13 shows themeasuredlatency of Chordlookupsover a
rangeof numbersof nodes.Experimentswith a numberof nodes
larger than ten are conductedby running multiple independent
copiesof the Chordsoftwareat eachsite. This is different from
running

�����	��
 �
� virtual nodesat eachsite to provide goodload
balance;rather, theintentionis to measurehow well our implemen-
tationscaleseventhoughwedonothavemorethanasmallnumber
of deployednodes.

For eachnumberof nodesshown in Figure 13, eachphysical
site issues16 Chord lookupsfor randomlychosenkeys one-by-
one. Thegraphplots the median,the5th, andthe 95th percentile

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

Lo
ok

up
 L

at
en

cy
 (

m
s)

Number of Nodes

5th, 50th, and 95th percentiles

Figure13: Lookup latencyon the Inter net prototype,asa func-
tion of the total number of nodes.Eachof the ten physicalsites
runs multiple independentcopiesof the Chord nodesoftware.

of lookuplatency. Themedianlatency rangesfrom 180to 285ms,
dependingon numberof nodes.For thecaseof 180nodes,a typi-
cal lookup involvesfive two-way messageexchanges:four for the
Chordlookup,anda final messageto thesuccessornode.Typical
round-tripdelaysbetweensitesare60 milliseconds(asmeasured
by ping). Thustheexpectedlookup time for 180nodesis about
300 milliseconds,which is closeto the measuredmedianof 285.
The low 5th percentilelatenciesare causedby lookupsfor keys
close(in ID space)to thequeryingnodeandby queryhopsthatre-
mainlocal to thephysicalsite.Thehigh95thpercentilesarecaused
by lookupswhosehopsfollow high delaypaths.

The lessonfrom Figure13 is that lookup latency grows slowly
with the total numberof nodes,confirmingthe simulationresults
thatdemonstrateChord’s scalability.

7. Future Work
Basedon our experiencewith the prototypementionedin Sec-

tion 6.6,we would like to improve theChorddesignin thefollow-
ing areas.

Chordcurrently hasno specificmechanismto healpartitioned
rings;suchringscouldappearlocally consistentto thestabilization
procedure.Oneway to checkglobal consistency is for eachnode
; to periodicallyaskothernodesto do a Chord lookup for ; ; if
the lookup doesnot yield node ; , theremay be a partition. This
will only detectpartitionswhosenodesknow of eachother. One
wayto obtainthisknowledgeis for everynodeto know of thesame
small set of initial nodes. Anotherapproachmight be for nodes
to maintainlong-termmemoryof a randomsetof nodesthey have
encounteredin thepast;if apartitionforms,therandomsetsin one
partitionarelikely to includenodesfrom theotherpartition.

A maliciousor buggysetof Chordparticipantscouldpresentan
incorrectview of the Chord ring. Assumingthat the dataChord
is beingusedto locateis cryptographicallyauthenticated,this is a
threatto availability of dataratherthanto authenticity. Thesame
approachusedabove to detectpartitionscouldhelpvictims realize
that they are not seeinga globally consistentview of the Chord
ring.

An attackercouldtargetaparticulardataitemby insertinganode
into the Chordring with an ID immediatelyfollowing the item’s
key, andhaving the nodereturnerrorswhenasked to retrieve the
data.Requiring(andchecking)thatnodesuseIDs derivedfrom the
SHA-1 hashof their IP addressesmakesthisattackharder.

Even
�	��
 � messagesper lookup may be too many for some

applicationsof Chord,especiallyif eachmessagemustbe sentto
a randomInternethost. Insteadof placingits fingersat distances
thatareall powersof ' , Chordcouldeasilybechangedto placeits
fingersat distancesthatareall integerpowersof

"Ï=�"5$ � . Under
suchascheme,asingleroutinghopcoulddecreasethedistanceto a
queryto

"%$��#"�= ��� of theoriginaldistance,meaningthat
�	��

��Ð`� �hopswould suffice. However, thenumberof fingersneededwould

increaseto
�	��
 � $����	��
��#"Ñ=É"5$ ���ÑÒ ��� � ����
 ��� .

A differentapproachto improving lookup latency might be to
useserver selection.Eachfingertableentrycouldpoint to thefirst
) nodesin that entry’s interval on the ID ring, anda nodecould
measurethe network delay to eachof the) nodes. The) nodes
aregenerallyequivalent for purposesof lookup, so a nodecould
forwardlookupsto theonewith lowestdelay. Thisapproachwould
bemosteffective with recursive Chordlookups,in which thenode
measuringthedelaysis alsothenodeforwardingthelookup.

8. Conclusion
Many distributed peer-to-peerapplicationsneedto determine

the nodethat storesa dataitem. The Chordprotocol solves this
challengingproblemin decentralizedmanner. It offers a power-
ful primitive: given a key, it determinesthe noderesponsiblefor
storingthekey’s value,anddoessoefficiently. In thesteadystate,
in an � -nodenetwork, eachnodemaintainsrouting information
for only about

��������
 ��� othernodes,andresolvesall lookupsvia�����	��
 �
� messagesto othernodes.Updatesto the routing infor-
mationfor nodesleaving andjoining requireonly

�����	��
 � ��� mes-
sages.

Attractive featuresof Chordincludeits simplicity, provablecor-
rectness,andprovableperformanceeven in the faceof concurrent
nodearrivalsanddepartures.It continuesto functioncorrectly, al-
beit at degradedperformance,whena node’s information is only
partially correct.Our theoreticalanalysis,simulations,andexper-
imentalresultsconfirmthatChordscaleswell with thenumberof
nodes,recoversfrom largenumbersof simultaneousnodefailures
andjoins, andanswersmostlookupscorrectlyeven duringrecov-
ery.

We believe that Chord will be a valuablecomponentfor peer-
to-peer, large-scaledistributedapplicationssuchascooperative file
sharing,time-sharedavailablestoragesystems,distributedindices
for documentand servicediscovery, and large-scaledistributed
computingplatforms.

Acknowledgments
We thankFrankDabekfor themeasurementsof theChordproto-
type describedin Section6.6, andDavid Andersenfor settingup
thetestbedusedin thosemeasurements.

9. References

[1] ANDERSEN, D. Resilientoverlaynetworks.Master’s thesis,
Departmentof EECS,MIT, May 2001.
http://nms.lcs.mit.edu/projects/ron/.

[2] BAKKER, A ., AMADE, E., BALLINTIJN, G., KUZ, I ., VERKAIK ,
P., VAN DER WI JK , I ., VAN STEEN, M., AND TANENBAUM ., A .
TheGlobedistribution network. In Proc.2000USENIXAnnualConf.
(FREENIXTrack) (SanDiego,CA, June2000),pp.141–152.

[3] CHEN, Y., EDLER, J., GOLDBERG, A ., GOTTLIEB, A ., SOBTI , S.,
AND Y IANILOS, P. A prototypeimplementationof archival
intermemory. In Proceedingsof the4thACM ConferenceonDigital
libraries (Berkeley, CA, Aug. 1999),pp.28–37.

[4] CLARKE, I . A distributeddecentralisedinformationstorageand
retrieval system.Master’s thesis,Universityof Edinburgh,1999.

[5] CLARKE, I ., SANDBERG, O., WI LEY, B., AND HONG, T. W.
Freenet:
Ó

A distributedanonymousinformationstorageandretrieval
system.In Proceedingsof theICSIWorkshoponDesignIssuesin
AnonymityandUnobservability(Berkeley, California,June2000).
http://freenet.sourceforge.net.

[6] DABEK , F., BRUNSKILL , E., KAASHOEK , M. F., KARGER, D.,
MORRIS, R., STOICA , I ., AND BALAKRISHNAN, H. Building
peer-to-peersystemswith Chord,adistributedlocationservice.In
Proceedingsof the8th IEEE WorkshoponHot Topicsin Operating
Systems(HotOS-VIII)(Elmau/Oberbayern,Germany, May 2001),
pp.71–76.

[7] DABEK , F., KAASHOEK , M. F., KARGER, D., MORRIS, R., AND

STOICA , I . Wide-areacooperative storagewith CFS.In Proceedings
of the18thACM SymposiumonOperating SystemsPrinciples(SOSP
’01) (To appear;Banff, Canada,Oct.2001).

[8] DRUSCHEL , P., AND ROWSTRON, A . Past:Persistentand
anonymousstoragein apeer-to-peernetworking environment.In
Proceedingsof the8th IEEE WorkshoponHot Topicsin Operating
Systems(HotOS2001)(Elmau/Oberbayern,Germany, May 2001),
pp.65–70.

[9] FIPS 180-1. Secure HashStandard. U.S.Departmentof
Commerce/NIST, NationalTechnicalInformationService,
Springfield,VA, Apr. 1995.

[10] Gnutella.http://gnutella.wego.com/.
[11] KARGER, D., LEHMAN, E., LEIGHTON, F., LEVINE, M., LEWIN,

D., AND PANIGRAHY, R. Consistenthashingandrandomtrees:
Distributedcachingprotocolsfor relieving hotspotson theWorld
Wide Web.In Proceedingsof the29thAnnualACM Symposiumon
Theoryof Computing(El Paso,TX, May 1997),pp.654–663.

[12] KUBIATOWICZ, J., BINDEL , D., CHEN, Y., CZERWINSKI , S.,
EATON, P., GEELS, D., GUMMADI , R., RHEA , S.,
WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.
OceanStore:An architecturefor global-scalepersistentstorage.In
Proceeedingsof theNinth internationalConferenceonArchitectural
Supportfor ProgrammingLanguagesandOperating Systems
(ASPLOS2000)(Boston,MA, November2000),pp.190–201.

[13] LEWIN, D. Consistenthashingandrandomtrees:Algorithmsfor
cachingin distributednetworks.Master’s thesis,Departmentof
EECS,MIT, 1998.Availableat theMIT Library,
http://thesis.mit.edu/.

[14] L I , J., JANNOTTI , J., DE COUTO, D., KARGER, D., AND MORRIS,
R. A scalablelocationservicefor geographicadhocrouting.In
Proceedingsof the6thACM InternationalConferenceonMobile
ComputingandNetworking(Boston,Massachusetts,August2000),
pp.120–130.

[15] MOCKAPETRIS, P., AND DUNLAP, K . J. Developmentof the
DomainNameSystem.In Proc.ACM SIGCOMM(Stanford,CA,
1988),pp.123–133.

[16] MOTWANI , R., AND RAGHAVAN, P. RandomizedAlgorithms.
CambridgeUniversityPress,New York, NY, 1995.

[17] Napster. http://www.napster.com/.
[18] Ohaha,Smartdecentralizedpeer-to-peersharing.

http://www.ohaha.com/design.html.
[19] PLAXTON, C., RAJARAMAN, R., AND RICHA , A . Accessing

nearbycopiesof replicatedobjectsin a distributedenvironment.In
Proceedingsof theACM SPAA (Newport,RhodeIsland,June1997),
pp.311–320.

[20] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND

SHENKER, S. A scalablecontent-addressablenetwork. In Proc.ACM
SIGCOMM(SanDiego,CA, August2001).

[21] STOICA , I ., MORRIS, R., KARGER, D., KAASHOEK , M. F., AND

BALAKRISHNAN, H. Chord:A scalablepeer-to-peerlookupservice
for internetapplications.Tech.Rep.TR-819,MIT LCS,March2001.
http://www.pdos.lcs.mit.edu/chord/papers/ .

[22] VAN STEEN, M., HAUCK , F., BALLINTIJN, G., AND TANENBAUM ,
A . Algorithmic designof theGlobewide-arealocationservice.The
ComputerJournal 41, 5 (1998),297–310.

