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Abstract

A fundamentaproblemthat confrontspeerto-peerapplicationss
to efficiently locatethe nodethatstoresa particulardataitem. This
paperpresentsChod, a distributedlookup protocolthataddresses
this problem.Chordprovidessupportfor just oneoperation:given
a key, it mapsthe key onto a node. Datalocation canbe easily
implementedon top of Chordby associatinga key with eachdata
item, and storing the key/dataitem pair at the nodeto which the
key maps. Chord adaptsefficiently as nodesjoin and leave the
systemandcananswerqueriesevenif the systemis continuously
changing. Resultsfrom theoreticalanalysis,simulations,and ex-
perimentsshav that Chordis scalable with communicationcost
andthe statemaintainedby eachnodescalinglogarithmicallywith
thenumberof Chordnodes.

1. Intr oduction

Peerto-peersystemsand applicationsare distributed systems
without ary centralizedcontrolor hierarchicalorganizationwhere
the software running at eachnodeis equialentin functionality
A review of the featuresof recentpeerto-peerapplicationsyields
a long list: redundantstorage,permanenceselectionof nearby
seners, anorymity, search,authenticationand hierarchicalnam-
ing. Despitethis rich setof features,the core operationin most
peerto-peersystemss efficient locationof dataitems. The contri-
bution of this paperis a scalableprotocolfor lookupin a dynamic
peerto-peersystemwith frequentnodearrivalsanddepartures.

The Chor protocol supportsjust one operation: given a key,
it mapsthe key ontoa node. Dependingon the applicationusing
Chord,thatnodemightberesponsibldor storingavalueassociated
with the key. Chord usesa variant of consistenthashing[11] to
assignkeys to Chord nodes. Consistentashingtendsto balance
load, sinceeachnoderecevesroughly the samenumberof keys,
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and involves relatively little movementof keys when nodesjoin
andleave the system.

Previous work on consistenthashingassumedhat nodeswere
awareof mostothernodesin the systemmakingit impracticalto
scaleto large numberof nodes.In contrasteachChordnodeneeds
“routing” informationaboutonly a few othernodes. Becausehe
routing table is distributed, a noderesoles the hashfunction by
communicatingwith a few other nodes. In the steadystate,in
an N-node system,eachnode maintainsinformation only about
O(log N) othernodesandresolhesall lookupsvia O(log N) mes-
sageso othernodes. Chord maintainsits routing informationas
nodesjoin and leave the system;with high probability eachsuch
eventresultsin no morethanO(log® N) messages.

Threefeaturesthat distinguishChordfrom mary otherpeerto-
peerlookup protocolsareits simplicity, provable correctnessand
provableperformanceChordis simple,routingakey througha se-
quenceof O(log V) othernodestoward the destination.A Chord
noderequiresnformationaboutO(log V) othernodedor efficient
routing, but performancedegradesgracefully whenthatinforma-
tion is out of date.Thisis importantin practicebecauseodeswill
join andleave arbitrarily, and consisteng of even O(log N) state
maybehardto maintain.Only onepieceinformationpernodeneed
be correctin orderfor Chordto guaranteecorrect(thoughslow)
routing of queries;Chordhasa simple algorithmfor maintaining
this informationin adynamicervironment.

The restof this paperis structuredasfollows. Section2 com-
paresChordto relatedwork. Section3 presentghe systemmodel
that motivatesthe Chord protocol. Section4 presentsthe base
Chordprotocolandprovesseveralof its propertieswhile Sections
presentsxtensionsto handleconcurrentjoins andfailures. Sec-
tion 6 demonstratesur claimsaboutChord’s performancehrough
simulationand experimentson a deployed prototype. Finally, we
outlineitemsfor futurework in Section7 andsummarizeour con-
tributionsin Section8.

2. RelatedWork

While Chord mapskeys onto nodes,traditional nameand lo-
cation servicesprovide a direct mappingbetweenkeys and val-
ues. A valuecanbe anaddressa document,or an arbitrary data
item. Chordcaneasilyimplementhis functionalityby storingeach
key/value pair at the nodeto which thatkey maps.For this reason
andto make thecomparisorclearertherestof this sectionassumes
a Chord-basedervicethatmapskeys ontovalues.

DNS providesa hostnameto IP addressmapping[15]. Chord
can provide the sameservicewith the namerepresentinghe key
and the associatedP addressrepresentinghe value. Chord re-
quiresno specialseners,while DNS relieson a setof specialroot



seners.DNS namesarestructuredo reflectadministratve bound-
aries; Chordimposesno namingstructure. DNS is specializedo

the taskof finding namedhostsor serviceswhile Chordcanalso
beusedto find dataobjectsthatarenottied to particularmachines.

The Freenetpeerto-peerstoragesystem[4, 5], like Chord, is
decentralizeédindsymmetricandautomaticallyadaptswhenhosts
leave andjoin. Freenetdoesnot assignresponsibilityfor docu-
mentsto specific seners; instead, its lookups take the form of
searchefor cachectopies.Thisallows Freeneto provide adegree
of anorymity, but preventsit from guaranteeingetrieval of existing
document®r from providing low boundson retrieval costs.Chord
doesnot provide anorymity, but its lookup operationrunsin pre-
dictabletime andalwaysresultsin succes®r definitive failure.

The Ohahasystemusesa consistentiashing-lile algorithmfor
mappingdocumentso nodesandFreenet-stylgueryrouting[18].
As aresult,it sharessomeof the weaknessesf Freenet.Archival
Intermemoryusesan off-line computedtree to map logical ad-
dresse$o machineghatstorethedata[3].

TheGlobesysteni2] hasawide-aredocationserviceto mapob-
jectidentifiersto the locationsof moving objects. Globearranges
thelInternetasahierarchyof geographicaltopological,or adminis-
trative domains effectively constructinga staticworld-wide search
tree, much like DNS. Information aboutan objectis storedin a
particular leaf domain, and pointer cachesprovide searchshort
cuts[22]. As pointedout by the authors the searchtree doesnot
scale becausdigherlevel nodesn thetreesene largenumbersof
requestandalsohave high storagedemands.

The distributed datalocation protocol developedby Plaxtonet
al. [19], a variantof which is usedin OceanStor¢12], is perhaps
the closestalgorithmto the Chord protocol. It provides stronger
guaranteethanChord: like Chordit guaranteethatqueriesmake
alogarithmicnumberhopsandthatkeys arewell balancedbut the
Plaxton protocol also ensures subjectto assumptionsaboutnet-
work topology thatqueriesnever travel furtherin network distance
thanthe nodewherethe key is stored. The adwantageof Chord
is thatit is substantiallylesscomplicatedand handlesconcurrent
nodejoins andfailureswell. The Chordprotocolis alsosimilarto
Pastry the locationalgorithmusedin PAST [8]. However, Pastry
is a prefix-basedouting protocol,anddiffersin otherdetailsfrom
Chord.

CAN usesad-dimensionalCartesiarcoordinatespacegfor some
fixed d) to implementa distributedhashtablethat mapskeys onto
values[20]. EachnodemaintainsO(d) state,andthe lookup cost
is O(dN'/%). Thus,in contrasto Chord,thestatemaintainedoy a
CAN nodedoesnot dependon the network size N, but thelookup
costincreasegasterthanlog N. If d = log N, CAN lookuptimes
andstorageneedsmatchChords. However, CAN is not designed
tovaryd asN (andthuslog ) varies,sothismatchwill only occur
for the “right” NV correspondingdo the fixedd. CAN requiresan
additionalmaintenancerotocolto periodicallyremaptheidentifier
spaceontonodes.Chordalsohastheadwantagehatits correctness
is robustin thefaceof partially incorrectroutinginformation.

Chords routing procedure may be thought of as a one-
dimensionabnalogueof the Grid locationsystem[14]. Grid relies
onreal-world geographidocationinformationto routeits queries;
Chordmapsits nodesto anartificial one-dimensionadpacewithin
which routingis carriedout by analgorithmsimilarto Grid’s.

Chord canbe usedas a lookup serviceto implementa variety
of systemsasdiscussedn Section3. In particular it can help
avoid single points of failure or control that systemdike Napster
posses$l7], andthelack of scalabilitythat systemdike Gnutella
displaybecausef theirwidespreadiseof broadcast§10].

3. SystemModel

Chordsimplifiesthedesignof peerto-peersystemsandapplica-
tionsbasednit by addressinghesedifficult problems:

e Load balance: Chord actsas a distributed hashfunction,
spreadindkeys evenly over the nodeshis providesa degree
of naturalloadbalance.

e Decentralization: Chord is fully distributed: no nodeis
moreimportantthanary other Thisimprovesrobustnesand
makes Chordappropriatdor loosely-oganizedpeerto-peer
applications.

e Scalability: Thecostof a Chordlookupgrows asthelog of
thenumberof nodessoevenverylargesystemsaarefeasible.
No parametetuningis requiredto achieve this scaling.

e Availability: Chordautomaticallyadjustsits internaltables
to reflectnewly joined nodesaswell asnodefailures,ensur
ing that,barringmajorfailuresin theunderlyingnetwork, the
noderesponsibldor akey canalwaysbefound. Thisis true
evenif thesystemis in a continuousstateof change.

o Flexible naming: Chordplacesno constraintson the struc-
tureof thekeys it looksup: the Chordkey-spacds flat. This
givesapplicationsa large amountof flexibility in how they
maptheir own namego Chordkeys.

The Chordsoftwaretakestheform of alibrary to belinkedwith
the client and sener applicationsthat useit. The applicationin-
teractswith Chord in two main ways. First, Chord provides a
| ookup(key) algorithmthatyields the IP addressof the node
responsibldor thekey. Secondthe Chordsoftwareon eachnode
notifiesthe applicationof changesn the setof keys thatthe node
is responsibldor. This allows the applicationsoftwareto, for ex-
ample,move correspondingaluesto their new homeswvhenanew
nodejoins.

TheapplicationusingChordis responsibléor providing ary de-
siredauthenticationgaching replication,anduserfriendly naming
of data. Chords flat key spaceeaseghe implementatiorof these
features. For example,an applicationcould authenticatadataby
storingit undera Chordkey derived from a cryptographichashof
thedata.Similarly, anapplicationcouldreplicatedataby storingit
undertwo distinct Chordkeys derived from the datas application-
levelidentifier

The following are examplesof applicationsfor which Chord
would provide agoodfoundation:

Cooperative Mirr oring, as outlined in a recent proposal [6].
Imaginea setof software developers,eachof whomwishes
to publishadistribution. Demandor eachdistribution might
vary dramatically from very popularjust afteranew release
to relatively unpopularbetweenreleases.An efficient ap-
proachfor this would befor the developersto cooperatiely
mirror eachothers’distributions. Ideally, the mirroring sys-
temwould balancethe load acrossall seners,replicateand
cachehedata,andensureauthenticity Suchasystenshould
be fully decentralizedn the interestsof reliability, and be-
causehereis no naturalcentraladministration.

Time-Shared Storage for nodeswith intermittentconnectvity. If
a personwishessomedatato be alwaysavailable, but their
machinds only occasionallyavailable,they canoffer to store
others’datawnhile they areup, in returnfor having their data
storedelsavherewhenthey aredown. The datas namecan
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Figure 1: Structure of an example Chord-based distrib uted
storagesystem.

sene asa key to identify the (live) Chordnoderesponsible
for storing the dataitem at ary given time. Mary of the

sameissuesariseasin the Cooperatie Mirroring applica-

tion, thoughthefocushereis on availability ratherthanload

balance.

Distrib uted Indexes to supportGnutella-or Napstetlik e keyword
search.A key in this applicationcould be derived from the
desiredkeywords, while valuescould be lists of machines
offering documentsvith thosekeywords.

Lar ge-ScaleCombinatorial Search, suchas codebreaking. In
this casekeys arecandidatesolutionsto the problem(suchas
cryptographidkeys); Chordmapsthesekeys to themachines
responsibldor testingthemassolutions.

Figurel shaws a possiblethree-layereagoftware structurefor a
cooperatre mirror system.The highestlayerwould provide afile-
likeinterfaceto usersjncludingusetfriendly namingandauthenti-
cation. This“file system”layermightimplemenmnamedlirectories
andfiles, mappingoperationson themto lower-level block opera-
tions. The next layer, a “block storage’layer, would implement
the block operations.It would take careof storage,caching,and
replicationof blocks. The block storagdayerwould useChordto
identify the noderesponsibldor storinga block, andthentalk to
theblock storagesener onthatnodeto reador write the block.

4. The BaseChord Protocol

The Chord protocolspecifieshow to find the locationsof keys,
how new nodegoin thesystemandhow to recover from thefailure
(or planneddeparturepf existing nodes. This sectiondescribesa
simplified versionof the protocolthat doesnot handleconcurrent
joinsor failures.Section5 describegnhancements thebasepro-
tocolto handleconcurrenjoins andfailures.

4.1 Overview

At its heart, Chord provides fast distributed computationof a
hashfunction mappingkeys to nodesresponsibldor them. It uses
consistenthashing[11, 13], which has several good properties.
With high probability the hashfunction balancedoad (all nodes
receve roughly the samenumberof keys). Also with high prob-
ability, whenan N** nodejoins (or leaves)the network, only an
O(1/N) fraction of the keys aremoved to a differentlocation—
thisis clearlytheminimumnecessaryo maintaina balancedoad.

Chordimprovesthe scalability of consistenhashingby avoid-
ing the requirementhatevery nodeknow aboutevery othernode.
A Chord nodeneedsonly a small amountof “routing” informa-
tion aboutothernodes. Becausehis informationis distributed, a

successor(l) = 1

successor(2) =3

successor(6) = 0

Figure 2: An identifier circle consistingof the threenodeso, 1,
and 3. In this example,key 1 is locatedat node1, key 2 at node
3,and key 6 at nodeO.

noderesohesthehashfunctionby communicatingvith afew other
nodes. In an N-nodenetwork, eachnode maintainsinformation
only aboutO(log V) othernodesandalookuprequiresO(log N)
messages.

Chordmustupdatethe routinginformationwhena nodejoins or
leavesthe network; ajoin or leave requiresO(log? N) messages.

4.2 ConsistentHashing

Theconsistenhashfunctionassignsachnodeandkey anm-bit
identifier usinga basehashfunction suchasSHA-1[9]. A nodes
identifieris chosenby hashingthe nodes IP addresswhile a key
identifier is producedby hashingthe key. We will usethe term
“key” to referto boththeoriginal key andits imageunderthehash
function, asthe meaningwill beclearfrom contect. Similarly, the
term“node” will referto boththe nodeandits identifierunderthe
hashfunction. The identifier lengthm mustbe large enoughto
malke theprobabilityof two nodesor keyshashingo thesamedden-
tifier neggligible.

Consistenhashingassignkeys to nodesasfollows. Identifiers
areorderedin anidentifiercircle modulo2™. Key k is assignedo
thefirst nodewhoseidentifieris equalto or follows (the identifier
of) k in theidentifierspace This nodeis calledthesuccessonode
of key k, denotedby successdik). If identifiersarerepresenteds
acircle of numbersfrom 0 to 2™ — 1, thensuccessor(k) is the
first nodeclockwisefrom k.

Figure 2 shawvs anidentifier circle with m = 3. Thecircle has
threenodes:0, 1, and3. The successoof identifierl is nodel, so
key 1 wouldbelocatedatnodel. Similarly, key 2 would belocated
atnode3, andkey 6 atnodeO.

Consistenhashingis designedo let nodesenterandleave the
network with minimal disruption.To maintainthe consistenhash-
ing mappingwhena noden joins the network, certainkeys previ-
ouslyassignedo n’s successonow becomeassignedo n. When
noden leavesthe network, all of its assignedkeys arereassigned
to n’s successorNo otherchangesn assignmenbf keys to nodes
needoccur In theexampleabove, if anodewereto join with iden-
tifier 7, it would capturethe key with identifier 6 from the node
with identifierO.

The following resultsare proven in the papersthat introduced
consistenhashing11, 13]:

THEOREM 1. For any setof N nodesand K keys, with high
probability:

1. Each nodeis responsibldor at most(1 + €) K /N keys

2. Whenan (N +1)** nodejoins or leaveghenetwork,respon-
sibility for O(K/N) keyschangeshands(andonlyto or from
thejoining or leavingnode).



Whenconsistenhashings implementedisdescribedibove, the
theoremprovesaboundof e = O(log V). The consistenhashing
papershawvs thate canbe reducedo an arbitrarily small constant
by having eachnoderun O(log N) “virtual nodes”eachwith its
own identifier

The phrase“with high probability” bearssomediscussion. A
simpleinterpretations thatthe nodesandkeys arerandomlycho-
sen,which is plausiblein a non-adersarialmodel of the world.
The probability distribution is then over randomchoicesof keys
andnodes,andsaysthat sucha randomchoiceis unlikely to pro-
duceanunbalancedlistribution. Onemightworry, however, about
anadwersarywhointentionallychoose&eysto all hashto thesame
identifier, destrging the load balancingproperty The consistent
hashingpaperuses'k-universalhashfunctions”to provide certain
guaranteesvenin the caseof nonrandorrkeys.

Ratherthanusinga k-universalhashfunction, we choseto use
thestandardSHA-1functionasour basenashfunction. This makes
our protocoldeterministic sothatthe claimsof “high probability”
nolongermale senseHowever, producingasetof keysthatcollide
underSHA-1 canbeseenjn somesenseasinverting,or “decrypt-
ing” the SHA-1 function. This is believed to be hardto do. Thus,
insteadof statingthat our theoremshold with high probability we
canclaimthatthey hold“basedon standarchardnesassumptions.

For simplicity (primarily of presentation)ywe dispensewith the
useof virtual nodes In thiscasetheloadonanodemayexceedthe
averageby (at most)an O(log ) factorwith high probability (or
in our case basedon standarchardnessassumptions)Onereason
to avoid virtual nodesis thatthe numberneededs determinedoy
thenumberof nodesin thesystemwhich maybedifficult to deter
mine. Of course pnemaychooseo useanapriori upperboundon
thenumberof nodesn thesystemfor example,we couldpostulate
atmostoneChordsener perIPv4 addresslin this caserunning32
virtual nodesperphysicalnodewould provide goodloadbalance.

4.3 ScalableKeyLocation

A very small amountof routing information suficesto imple-
mentconsistentashingin a distributed environment. Eachnode
needonly be aware of its successonodeon the circle. Queries
for agivenidentifiercanbe passediroundthecircle via thesesuc-
cessorpointersuntil they first encountera nodethat succeedshe
identifier;thisis thenodethequerymapsto. A portionof theChord
protocolmaintainsthesesuccessopointers,thusensuringthat all
lookupsareresohed correctly However, this resolutionschemés
inefficient: it may requiretraversingall N nodesto find the ap-
propriatemapping. To acceleratehis process,Chord maintains
additionalrouting information. This additionalinformationis not
essentiafor correctnessyhichis achieredaslong asthesuccessor
informationis maintaineccorrectly

As before letm bethenumberof bitsin thekey/nodeidentifiers.
Eachnode,n, maintainsa routing tablewith (at most)m entries,
calledthefinger table Theit” entryin thetableatnoden contains
theidentity of thefirstnode,s, thatsucceeds: by atleast2:~! on
the identifier circle, i.e., s = successor(n + 2°=1), wherel <
i < m (andall arithmeticis modulo2™). We call nodes the i*"
finger of noden, anddenoteit by n.finger[¢].node (seeTable 1).
A finger table entry includesboth the Chordidentifier andthe IP
addresgandport number)of therelevantnode. Note thatthefirst
fingerof n is itsimmediatesuccessoonthecircle; for corvenience
we oftenreferto it asthe successoratherthanthefirst finger.

In the exampleshavn in Figure 3(b), the fingertable of nodel
pointsto the successonodesof identifiers(1 + 2°) mod2® = 2,
(1 + 2% mod2® = 3, and (1 + 22) mod2® = 5, respectiely.
The successoof identifier2 is node3, asthisis thefirst nodethat

Notation Definition
fingerfk].start | (n+2F")ymod2™, 1 <k <m
.Interval finger[k].start, finger[k + 1].start)
.node irst node> n.finger[k].start
successor the next node on the identifier circle;
finger[1].node
predecessor | thepreviousnodeontheidentifiercircle

Table 1: Definition of variables for node n, using m-bit identi-
fiers.

follows 2, the successoof identifier3 is (trivially) node3, andthe
successoof 5 is node0.

This schemeéhastwo importantcharacteristicsFirst, eachnode
storesinformationaboutonly a small numberof othernodes,and
knows moreaboutnodescloselyfollowing it ontheidentifiercircle
thanaboutnodesartheraway. Secondanodes fingertablegener
ally doesnot containenoughinformationto determinethe succes-
sorof anarbitrarykey k. For example,node3 in Figure3 doesnot
know thesuccessoof 1, asl’s successofnodel) doesnot appear
in node3’sfingertable.

Whathappensvhena noden doesnotknow the successoof a
key k? If n canfind a nodewhoselD is closerthanits own to k,
that nodewill knov more aboutthe identifier circle in the region
of k& thann does. Thusn searchedts finger tablefor the nodej
whoselD mostimmediatelyprecedes:, andasks; for the nodeit
knowvswhoselD is closesto k. By repeatinghis processn learns
aboutnodeswith IDs closerandcloserto k.

The pseudocodéhatimplementsthe searchprocesss shavn in
Figure 4. The notationn.foo() standsfor the function foo() be-
ing invoked at andexecutedon noden. Remotecallsandvariable
referencesre precededy the remotenodeidentifier, while local
variablereferencesndprocedurecalls omit the local node. Thus,
n.foo() denotesa remoteprocedurecall on noden, n.bar, without
parenthesess an RPCto lookup a variablebar on noden, while
foo() denotesalocal functioncall.

find_successoworksby finding theimmediatepredecessarode
of the desiredidentifier; the successoof that node must be the
successoof theidentifier We implementfind_predecessoexplic-
itly, becauset is usedlaterto implementthe join operation(Sec-
tion4.4).

Whennoden executesfind_predecessorit contactsa seriesof
nodesmoving forwardaroundthe Chordcircle towardsid. If node
n contactsanoden’ suchthatid fallsbetweem’ andthesuccessor
of n’, find_predecessois doneandreturnsn’. Otherwisenoden
asksn’ for thenoden’ knows aboutthatmostcloselyprecedesd.
Thusthealgorithmalwaysmakesprogressowardsthe precedessor
of id.

As anexample,considerthe Chordring in Figure3(b). Suppose
node3 wantsto find the successoof identifier1. Sincel belongs
tothecircularinterval [7, 3), it belonggo 3.finger[3].interval; node
3 thereforechecksthe third entry in its finger table, which is 0.
Becausd preceded, node3 will asknode0 to find the successor
of 1. Inturn,node0 will infer fromits fingertablethat1’ssuccessor
is thenodel itself, andreturnnodel to node3.

The finger pointersat repeatedlydoublingdistancesaroundthe
circle causeeachiterationof theloop in find_predecessoto halve
the distanceto the targetidentifier From this intuition follows a
theorem:

THEOREM 2. With high probability (or under standad hard-
nessassumptions)the numberof nodesthat mustbe contactedo
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Figure 3: (a) The finger intervals associatedvith node 1. (b) Finger tablesand key locationsfor a net with nodes0, 1, and 3, and keys1, 2, and 6.

find a successoin an N-nodenetworkis O(log N).

PrROOF. Supposdhatnoden wishesto resole a queryfor the
successoof k. Let p bethenodethatimmediatelyprecedeg. We
analyzethenumberof querystepsto reachp.

Recallthatif n # p, thenn forwardsits queryto the closest
predecessarf k in its fingertable. Supposéhatnodep is in thest"
fingerinterval of noden. Thensincethisinterval is notempty node
n will fingersomenodef in thisinterval. Thedistancgnumberof
identifiers)betweern and f is atleast2’~!. But f andp areboth
inn'sith fingerinterval, which meanghedistancebetweerthemis
atmost2'~'. Thismeansf is closerto p thanto n, or equivalently,
thatthe distancefrom f to p is at mosthalf the distancefrom n to

Pp.

If the distancebetweerthe nodehandlingthequeryandthe pre-
decessop halvesin eachstep,andis at most2™ initially, then
within m stepsthe distancewill be one,meaningwe have arrived
atp.

In fact,asdiscussedbove, we assumahatnodeandkey identi-
fiersarerandom.In this casethe numberof forwardingsnecessary
will be O(log V) with high probability After log NV forwardings,
the distancebetweerthe currentquerynodeandthekey &k will be
reducedto at most2™ /N. The expectednumberof nodeidenti-
fierslandingin a rangeof this sizeis 1, andit is O(log V) with
high probability Thus,evenif theremainingstepsadvanceby only
onenodeatatime, they will crosstheentireremaininginterval and
reachkey k within anotherO(log N) steps. [

In the sectionreportingour experimentalresults(Section6), we
will obsere (andjustify) thattheaveragdookuptimeis % log N.

4.4 NodeJoins

In a dynamicnetwork, nodescanjoin (andleave) at ary time.
Themainchallengen implementingheseoperationss preserving
the ability to locateevery key in the network. To achieve this goal,
Chordneedgo presere two invariants:

1. Eachnodes successois correctlymaintained.
2. For everykey k, nodesuccessor(k) is responsibldor k.

In orderfor lookupsto be fast, it is also desirablefor the finger
tablesto becorrect.

This sectionshavs how to maintaintheseinvariantswhena sin-
gle nodejoins. We deferthe discussiorof multiple nodesjoining
simultaneouslyto Section5, which alsodiscusse$ow to handle
a nodefailure. Before describingthe join operation,we summa-
rize its performancedthe proof of this theoremis in thecompanion
technicalreport[21]):

/I asknoden to find id’s successor
n.find_successor(id)
n! = find_predecessgid);
return n’.successar

/I asknoden to find :d’s predecessor
n.find_predecessor (id)
n' =n;
while (id ¢ (n',n’.successd)
n' = n/.closestprecedingfinger(id);
return n’;

/I returnclosesfinger precedingid
n.closest_preceding_finger(id)
for ¢ = m downto 1
if (finger[¢].node€ (n,id))
return finger[z].node
return n;

Figure4: The pseudocoddo find the successonodeof aniden-
tifier id. Remoteprocedure calls and variable lookups are pre-
cededby the remotenode.

THEOREM 3. With high probability, any nodejoining or leav-
ing an N-node Chord networkwill use O(log® N) messgesto
re-establisithe Chord routinginvariantsandfinger tables.

To simplify thejoin andleave mechanismsgachnodein Chord
maintainsapredecessagpointer. A nodes predecessgointercon-
tainsthe ChordidentifierandIP addres®f theimmediategpredeces-
sorof thatnode,andcanbe usedto walk counterclockwiseround
theidentifiercircle.

To presere the invariants statedabose, Chord must perform
threetaskswhenanoden joins the network:

1. Initialize the predecessaandfingersof noden.

2. Updatethe fingersandpredecessorsf existing nodesto re-
flecttheadditionof n.

3. Notify the higherlayer software sothatit cantransferstate
(e.g.values)associateavith keysthatnoden is now respon-
siblefor.

We assumehatthe new nodelearnsthe identity of an existing
Chordnoden’ by someexternalmechanism.Noden usesn’ to
initialize its stateand additself to the existing Chord network, as
follows.

Initializing fingers and predecessor: Node n learnsits pre-
decessorand fingers by askingn’ to look them up, using the
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Figure 5: (a) Finger tablesand key locations after node6 joins. (b) Finger tablesand key locationsafter node 3 leaves. Changedentries are shovn

in black, and unchangedin gray.

init_finger_table pseudocoden Figure 6. Naively performing
find_successofor eachof the m finger entrieswould give a run-
time of O(mlog N). To reducethis, n checkswhetherthe it*

finger is alsothe correct(i + 1)** finger, for eachi. This hap-
penswhenfinger[¢].interval doesnot containary node,andthus
finger[¢].node> finger[i + 1].start It canbeshavn thatthechange
reducesthe expected(and high probability) numberof finger en-
triesthatmustbelookedupto O(log V), whichreducesheoverall

timeto O(log? N).

As a practicaloptimization,a newly joined noden canaskan
immediateneighborfor a copy of its completefingertableandits
predecessom canusethe contentsof thesetablesashintsto help
it find the correctvaluesfor its own tables,sincen’s tableswill be
similar to its neighbors’. This canbe shavn to reducethe time to
fill thefingertableto O(log NV).

Updating fingers of existing nodes: Noden will needto be en-
teredinto thefingertablesof someexisting nodes.For example,in
Figure5(a),node6 becomeghethird fingerof nodesd and1, and
thefirst andthe secondingerof node3.

Figure6 shaws the pseudocodef the updatefinger_table func-
tion thatupdatesxisting fingertables.Noden will becometheit®
fingerof nodep if andonly if (1) p precedes by atleast2*~!, and
(2) thet” fingerof nodep succeeds:. Thefirst node,p, thatcan
meetthesewo conditionss theimmediatepredecessanf n—2° 71,
Thus,for agivenn, thealgorithmstartswith thes** fingerof node
n, andthencontinuesto walk in the counterclock-wisedirection
on the identifier circle until it encounters nodewhosest? finger
precedes.

We shaw in the technicalreport[21] that the numberof nodes
thatneedto beupdatedvhenanodejoinsthenetwork is O(log V)
with high probability Finding and updatingthesenodestakes
O(log? N) time. A moresophisticatedchemeanreducethistime
to O(log N); however, we donotpresentt aswe expectimplemen-
tationsto usethe algorithmof thefollowing section.

Transferring keys: The last operationthat hasto be performed
whena noden joins the network is to maove responsibilityfor all

the keys for which noden is now the successorExactly whatthis

entailsdepend®n thehigherlayersoftwareusingChord,but typi-

cally it would involve moving the dataassociatedavith eachkey to

thenew node.Noden canbecomehe successoonly for keys that
werepreviously theresponsibilityof the nodeimmediatelyfollow-

ing n, son only needgo contactthatonenodeto transferrespon-
sibility for all relevantkeys.
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#define successorfinger[1].node

/I noden joins thenetwork;
/I n' is anarbitrary nodein the network
n.join(n')
if (n')
init_finger_tableg(n’);
updateothers();
/I movekeysin (predecessor, n] fromsuccessor
else// n is theonly nodein the network
fori=1tom
finger(¢].node= n;
predecessot= n;

[/ initialize finger table of local node;
/I n' is an arbitrary nodealreadyin the network
n.init_finger_table(n')
finger(1].node= r'.find.successdifinger[1].start);
predecessor successapredecessor
successapredecessoe n;
fori=1tom—1
if (finger[¢ + 1].start € [n, finger[i].node)
finger(¢ + 1].node= finger[i].nodg
else
finger(¢ + 1].node=
n' find_successdfinger[: + 1].start);

I/l updateall nodeswhosefinger
// tablesshouldreferto n
n.update_others()
fori=1tom
// find lastnodep whoseit" finger mightben
p = find_predecessdgn — 2¢-1);
p.updatefinger_table(n, );

I1'if s isdt? finger of n, updaten’s finger tablewith s
n.update_finger_table(s, ;)
if (s € [n,finger[:].nodg)
finger[¢].node= s;
p = predecessqr/ getfirstnodeprecedingn
p.updatefinger_table(s, 7);

Figure 6: Pseudocoddor the nodejoin operation.



n.join(n')
predecessor = nil;
successor = n'.find.successdm);

/I periodicallyverify n’simmediatesuccessor
/I andtell thesuccessoaboutn.
n.stabilize()
r = successor.predecessor;
if (x € (n, successor))
SuUccessor = T,
successor.notify(n);

/I n’ thinksit mightbe our predecessor
n.notify(n’)
if (predecessor isnil or n' € (predecessor,n))
predecessor = n’;

/I periodicallyrefreshfinger table entries.
n.fix_fingers()
1 = randomindex > 1 into finger(];
finger[¢].node = find_successdfinger[s].start);

Figure 7: Pseudocoddor stabilization.

5. Concurrent Operations and Failures

In practiceChord needsto dealwith nodesjoining the system
concurrentlyand with nodesthat fail or leave voluntarily. This
sectiondescribesnodificationsto the basicChordalgorithmsde-
scribedin Section4 to handlethesesituations.

5.1 Stabilization

Thejoin algorithmin Sectiond4 aggressiely maintainghefinger
tablesof all nodesasthe network evolves. Sincethis invariantis
difficult to maintainin the faceof concurrenfoins in a large net-
work, we separateur correctnesandperformanceoals.A basic
“stabilization” protocolis usedto keepnodes’successopointers
up to date,which is sufficient to guaranteeorrectnessf lookups.
Thosesuccessopointersare then usedto verify and correctfin-
gertableentries,which allows theselookupsto be fastaswell as
correct.

If joining nodeshave affected someregion of the Chordring,
a lookup that occursbefore stabilizationhasfinished can exhibit
oneof threebehaiors. The commoncaseis thatall thefingerta-
ble entriesinvolved in the lookup arereasonablycurrent,andthe
lookupfindsthe correctsuccessoin O(log N) steps.The second
cases wheresuccessopointersarecorrect,but fingersareinaccu-
rate. This yields correctlookups,but they may be slower. In the
final casethenodesin theaffectedregion have incorrectsuccessor
pointers,or keys maynotyet have migratedto newly joinednodes,
andthe lookup may fail. The higherlayer software using Chord
will noticethatthe desireddatawasnot found, andhasthe option
of retryingthelookup aftera pause This pausecanbe short,since
stabilizationfixessuccessopointersquickly.

Ourstabilizationschemeayuarantee® addnodego aChordring
in away that preseresreachabilityof existing nodes,evenin the
faceof concurrentoins and lost and reorderedmessagesStabi-
lization by itself won't correcta Chord systemthat hassplit into
multiple disjoint cycles,or a singlecycle thatloopsmultiple times
aroundthe identifier space. Thesepathologicalcasescannotbe
producedby ary sequenceof ordinary nodejoins. It is unclear
whetherthey canbe produceddy network partitionsandrecoreries
or intermittentfailures. If producedthesecasesouldbe detected
andrepairedby periodicsamplingof thering topology

Figure7 shavs the pseudo-codéor joins andstabilization;this

codereplacesFigure 6 to handleconcurrentoins. Whennoden
first starts,it callsn.join(n’), wheren' is ary knovn Chordnode.
Thejoin functionasksn’ to find theimmediatesuccessoof n. By
itself, join doesnot malke therestof the network awareof n.

Every noderunsstabilizeperiodically(this is how newly joined
nodesare noticedby the network). Whennoden runs stabilize
it asksn’s successofor the successos predecessop, and de-
cideswhetherp shouldbe n’'s successoinstead. This would be
the caseif nodep recentlyjoined the system. stabilizealso noti-
fies noden’'s successopf n’s existence,giving the successothe
chanceo changéts predecessdp n. Thesuccessodoesthisonly
if it knows of no closerpredecessahann.

As a simpleexample,supposenoden joins the system,andits
ID liesbetweemodesn, andn;. n wouldacquiren, asits succes-
sor Noden,, whennotifiedby n, would acquiren asits predeces-
sor Whenn,, next runsstabilize it will askn, for its predecessor
(whichis now n); n, wouldthenacquiren asits successoirinally,
np Will notify n, andn will acquiren, asits predecessorAt this
point, all predecessaandsuccessopointersarecorrect.

As soon as the successorpointers are correct, calls to
find_predecessofandthusfind_successgmwill work. Newly joined
nodeghathave notyetbeenfingeredmaycausdind predecessaio
initially undershootbut theloopin thelookup algorithmwill nev-
erthelesdollow successoffinger[1]) pointersthroughthe newly
joined nodesuntil the correctpredecessois reached. Eventually
fix_fingers will adjustfingertableentries,eliminatingthe needfor
theselinearscans.

The following theorems(proved in the technicalreport [21])
shaw that all problemscausedby concurrentjoins are transient.
The theoremsassumethat ary two nodestrying to communicate
will eventuallysucceed.

THEOREM 4. Once a node can successfullyresolvea given
query it will alwaysbeableto do soin thefuture.

THEOREM 5. At sometime after the last join all successor
pointers will becorrect.

Theproofsof thesetheoremsely on aninvariantandatermina-
tion agument.Theinvariantstategshatoncenoden canreachnode
r Via successopointers, it alwayscan. To arguetermination,we
considerthe casewheretwo nodesboth think they have the same
successos. In this caseeachwill attemptto notify s, ands will
eventuallychoosehecloserof thetwo (or someother closemode)
asits predecessott this pointthe fartherof the two will, by con-
tacting s, learnof a bettersuccessothans. It follows that every
node progressesowardsa betterand bettersuccessopver time.
This progressnusteventually halt in a statewhereevery nodeis
consideredhe successoof exactly oneothernode;this definesa
cycle (or setof them,but theinvariantensureghattherewill beat
mostone).

We have notdiscussedheadjustmenbf fingerswhennodegoin
becauset turnsout thatjoins don't substantiallyjdamagethe per
formanceof fingers. If anodehasa fingerinto eachintenal, then
thesefingerscanstill beusedevenafterjoins. Thedistancehalving
argumentis essentiallyunchangedshaving that O(log V) hops
suffice to reacha node“close” to a querys target. New joins in-
fluencethelookup only by gettingin betweerthe old predecessor
andsuccessoof atargetquery Thesenewvw nodesmay needto be
scannedinearly (if theirfingersarenotyetaccurate)But unlessa
tremendousiumberof nodegoinsthesystemthenumberof nodes
betweenwo old nodesis likely to be very small,sotheimpacton
lookupis negligible. Formally, we canstatethefollowing:



THEOREM 6. If we take a stablenetworkwith N nodes,and
anothersetof upto N nodegoinsthenetworkwith nofinger point-
ers (butwith correctsuccessopointess), thenlookupswill still take
O(log N) timewith high probability.

More generally so long asthetime it takesto adjustfingersis
lessthanthe time it takesthe network to doublein size,lookups
shouldcontinueto take O(log V') hops.

5.2 Failuresand Replication

Whena noden fails, nodeswhosefingertablesincluden must
find n’s successorn addition,thefailure of n mustnotbeallowed
to disruptquerieghatarein progresasthesystenis re-stabilizing.

The key stepin failure recovery is maintainingcorrectsucces-
sor pointers, sincein the worst casefind_predecessoican make
progresausingonly successorsTo help achieve this, eachChord
nodemaintainsa “successofist” of its r nearessuccessoren the
Chordring. In ordinaryoperation,a modifiedversionof the stabi-
lize routinein Figure 7 maintainsthe successalist. If noden no-
ticesthatits successohasfailed,it replacest with thefirstlive en-
try in its successalist. At thatpoint, n candirectordinarylookups
for keys for which the failed nodewas the successoto the new
successorAs time passesstabilizewill correctfingertableentries
andsuccessalist entriespointingto thefailednode.

After anodefailure,but beforestabilizatiorhascompletedpther
nodesmay attemptto sendrequestshroughthe failednodeaspart
of afind_successofookup. Ideally the lookupswould be ableto
proceed,after a timeout, by anotherpath despitethe failure. In
mary casesghis is possible.All thatis neededs alist of alternate
nodes.easilyfoundin thefingertableentriesprecedinghatof the
failed node. If the failed nodehada very low finger tableindex,
nodesin thesuccessalist arealsoavailableasalternates.

The technical report proves the following two theoremsthat
shav thatthe successalist allows lookupsto succeedandbe effi-
cient,evenduringstabilization[21]:

THEOREM 7. If weusea successolist oflengthr = O(log N)
in a networkthat s initially stable andtheneverynodefails with
probability 1/2, thenwith high probability find_successoreturns
theclosestiving successoto the querykey.

THEOREM 8. If weusea successolist oflengthr = O(log N)
in a networkthat s initially stable andtheneverynodefails with
probability 1/2, thenthe expectedimeto executefind_successom
thefailed networkis O(log N).

The intuition behindtheseproofsis straightforvard: a nodes r
successorall fail with probability2™" = 1/N, sowith high prob-
ability anodewill be awareof, soableto forward messaget, its
closestiving successor

The successalist mechanismalso helpshigher layer software
replicatedata.A typical applicationusingChordmight storerepli-
casof thedataassociateavith a key atthe k nodessucceedinghe
key. The factthata Chord nodekeepstrack of its » successors
meanghatit caninform the higherlayersoftwarewhensuccessors
comeand go, and thus when the software should propagatenew
replicas.

6. Simulation and Experimental Results

In this section,we evaluatethe Chord protocol by simulation.
The simulatorusesthe lookup algorithmin Figure4 anda slightly
olderversionof the stabilizationalgorithmsdescribedn Sections.
We alsoreporton somepreliminary experimentalresultsfrom an
operationalChord-basedystenrunningon Internethosts.
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Figure 9: The 1st and the 99th percentiles of the number of
keysper node as a function of virtual nodesmappedto areal
node. The network has10* realnodesand stores10° keys.

6.1 Protocol Simulator

The Chordprotocolcanbeimplementedn aniterative or recur
sivestyle. In theiterative style,a noderesolvinga lookupinitiates
all communication:it asksa seriesof nhodesfor informationfrom
theirfingertables.eachtime maving closeronthe Chordring to the
desiredsuccessor In the recursve style, eachintermediatenode
forwardsa requesto the next nodeuntil it reacheghe successor
Thesimulatorimplementshe protocolsin aniterative style.

6.2 Load Balance

Wefirst considettheability of consistenhashingo allocatekeys
to nodesevenly. In anetwork with N nodesand K keys we would
like thedistribution of keys to nodesto betight aroundN/ K.

We considera network consistingof 10* nodes,and vary the
total numberof keys from 10° to 10° in incrementsof 10°. For
eachvalue, we repeatthe experiment20 times. Figure 8(a) plots
themeanandthe 1stand99th percentileof thenumberof keys per
node. The numberof keys per nodeexhibits large variationsthat
increasdinearly with thenumberof keys. For example,in all cases
somenodesstoreno keys. To clarify this, Figure 8(b) plots the
probability densityfunction (PDF) of the numberof keys pernode
whenthereareb x 10° keys storedin the network. The maximum
numberof nodesstoredby ary nodein thiscases 457,0r9.1x the
meanvalue. For comparisonthe 99th percentileis 4.6 x themean
value.

Onereasorfor thesevariationsis thatnodeidentifiersdo not uni-
formly cover the entireidentifier space.If we divide the identifier
spacdn N equal-sizedins,whereN is thenumberof nodesthen
we might hopeto seeonenodein eachbin. But in fact,the proba-
bility thataparticularbin doesnotcontainary nodeis (1—1/N)™~.
For largevaluesof N this approaches ! = 0.368.

As we discussecabarlier the consistenhashingpapersolvesthis
problemby associatingeys with virtual nodes andmappingmul-
tiple virtual nodes(with unrelatedidentifiers)to eachreal node.
Intuitively, this will provide a moreuniform coverageof theiden-
tifier space. For example,if we allocatelog N randomlychosen
virtual nodesto eachreal node,with high probability eachof the
N binswill containO(log N) nodes[16]. We notethatthis does
not affect the worst-casequery path length, which now becomes
O(log(Nlog N)) = O(log N).

To verify this hypothesiswe perform an experimentin which
we allocater virtual nodesto eachreal node. In this casekeys
areassociatedo virtual nodesinsteadof real nodes.We consider
againa network with 10* realnodesand10°® keys. Figure9 shovs
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Figure8: (a) The meanand 1stand 99th percentilesof the number of keysstored per nodein a10* nodenetwork. (b) The probability
density function (PDF) of the number of keysper node. The total number of keysis 5 x 10°.

the 1st and 99th percentilesfor r = 1,2, 5,10, and 20, respec-
tively. As expected,the 99th percentiledecreasesyhile the 1st
percentileincreasesvith the numberof virtual nodes,r. In par

ticular, the 99th percentiledecreaseffom 4.8 x to 1.6 x themean
value,while the 1st percentileincreasesgrom 0 to 0.5x the mean
value. Thus,addingvirtual nodesasan indirectionlayer cansig-

nificantly improve load balance.The tradeof is thatrouting table
spaceusagenill increaseaseachactualnodenow needs- timesas
muchspaceo storethefingertablesfor its virtual nodes However,

we believe thatthis increasecanbe easilyaccommodateih prac-
tice. For example,assuminga network with N = 10°® nodesand
assuming" = log N, eachnodehasto maintaina tablewith only

log? N ~ 400 entries.

6.3 Path Length

The performancef ary routingprotocoldepend$eaily onthe
length of the path betweentwo arbitrary nodesin the network.
In the contet of Chord, we definethe pathlengthasthe number
of nodestraversedduring a lookup operation. From Theorem2,
with high probability the lengthof the pathto resole a queryis
O(log N), whereN is thetotal numberof nodesin thenetwork.

To understandhords routing performanceén practice we sim-
ulateda network with N = 2* nodes,storing 100 x 2* keys in
all. We variedk from 3 to 14 andconducteda separat@xperiment
for eachvalue. Eachnodein an experimentpicked a randomset
of keysto queryfrom the system andwe measuredhe pathlength
requiredto resole eachquery

Figure10(a)plotsthe mean,andthe 1stand99th percentilesof
pathlengthasa functionof k. As expectedthe meanpathlength
increasedogarithmicallywith the numberof nodes,asdo the 1st
and99thpercentilesFigure10(b) plotsthe PDF of the pathlength
for anetwork with 2!2 nodes(k = 12).

Figure10(a)shaws thatthe pathlengthis about% log, N. The
reasonfor the } is asfollows. Considersomerandomnodeand
arandomquery Let thedistancen identifier spacebe considered
in binary representationThe mostsignificant(say:t") bit of this
distancecan be correctedto 0 by following the nodes ** finger.
If the next significantbit of the distanceis 1, it too needsto be
correctecdby following afinger, but if it is 0, thennos — 1°¢ finger
is followed—insteadwe move onthethei—2"¢ bit. In generalthe
numberof fingerswe needto follow will bethe numberof onesin
thebinaryrepresentatioof thedistancgrom nodeto query Since
thedistancds random we expecthalf thelog IV bits to beones.
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Figure 11: The fraction of lookupsthat fail asa function of the
fraction of nodesthat fail.

6.4 SimultaneousNodeFailures

In this experiment,we evaluatethe ability of Chordto regain
consisteng after a large percentagef nodesfail simultaneously
We consideragaina 10* nodenetwork that stores10° keys, and
randomlyselecta fraction p of nodesthatfail. After the failures
occur we wait for the network to finish stabilizing,andthenmea-
surethe fraction of keys that could not be looked up correctly A
correctlookup of a key is onethat finds the nodethat was origi-
nally responsibldor the key, beforethe failures;this corresponds
to a systemthat storesvalueswith keys but doesnot replicatethe
valuesor recover thematfterfailures.

Figure11 plotsthe meanlookup failure rateandthe 95% confi-
denceinterval asa functionof p. Thelookupfailurerateis almost
exactly p. Sincethisis justthe fractionof keys expectedto belost
dueto thefailure of theresponsiblenodeswe concludethatthere
is nosignificantlookupfailurein the Chordnetwork. For example,
if the Chordnetwork hadpartitionedin two equal-sizechalves,we
would expectone-halfof the requestgo fail becausehe querier
andtarget would be in differentpartitionshalf the time. Our re-
sultsdo not show this, suggestinghat Chordis robustin the face
of multiple simultaneousodefailures.

6.5 Lookups During Stabilization

A lookupissuedafter somefailuresbut beforestabilizationhas
completedmayfail for two reasonsFirst, thenoderesponsibldor
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Figure 12: The fraction of lookups that fail as a function of
the rate (over time) at which nodesfail and join. Only failur es
causedby Chord stateinconsistencyare included, not failur es
dueto lostkeys.

the key may have failed. Second,somenodes’finger tablesand
predecessopointersmay be inconsistentdue to concurrentoins
andnodefailures. This sectionevaluateshe impactof continuous
joins andfailureson lookups.

In this experiment,alookupis consideredo have succeededf
it reacheghe currentsuccessoof the desiredkey. This is slightly
optimistic: in arealsystemtheremightbeperiodsof timein which
thereal successoof a key hasnotyetacquiredthe dataassociated
with thekey from the previoussuccessomHowever, thismethodal-
lows usto focuson Chords ability to performlookups,ratherthan
onthehigherlayersoftware’s ability to maintainconsisteng of its
own data.Any queryfailurewill betheresultof inconsistenciem
Chord. In addition,the simulatordoesnot retry queries:if aquery
is forwardedto a nodethatis down, the querysimply fails. Thus,
the resultsgiven in this sectioncan be viewed as the worst-case
scenaridor the queryfailuresinducedby stateinconsisteny.

Becausehe primary sourceof inconsistenciess nodesjoining
andleaving, andbecauseghe mainmechanisnto resole thesein-
consistenciets the stabilizeprotocol,Chords performancevill be
sensitve to the frequenyg of nodejoins andleavesversusthe fre-
gueng atwhichthe stabilizationprotocolis invoked.

In this experiment, key lookups are generatedaccordingto a
Poissonprocessat a rate of one per second. Joinsand failures
aremodeledby a Poissorprocesswith the meanarrival rateof R.

Eachnoderunsthe stabilizationroutinesat randomizedntervals
averaging30 secondsunlike theroutinesin Figure7, thesimulator
updatesall finger table entrieson every invocation. The network
startswith 500nodes.

Figurel2plotstheaverageailureratesandconfidencentervals.
A nodefailure rate of 0.01 correspondgo one nodejoining and
leaving every 100 secondn average.For comparisonrecallthat
eachnodeinvokes the stabilize protocol once every 30 seconds.
In otherwords, the graphz axis rangesfrom a rate of 1 failure
per 3 stabilizationstepsto arateof 3 failuresper onestabilization
step.Theresultspresentedn Figure12 areaveragedover approx-
imately two hoursof simulatedtime. The confidencentenalsare
computedover 10independentuns.

Theresultsof figure 12 canbeexplainedroughlyasfollows. The
simulationhas 500 nodes,meaninglookup path lengthsaverage
arounds. A lookupfailsif its fingerpathencounters failednode.
If £ nodedail, the probabilitythatoneof themis onthefingerpath
is roughly 5k /500, or k/100. This would suggest failurerateof
about3% if we have 3 failuresbetweenstabilizations.The graph
shavsresultsin thisball-park,but slightly worsesinceit mighttake
morethanonestabilizationto completelyclearout a failednode.

6.6 Experimental Results

Thissectionpresentsateny measuremengbtainedrom apro-
totype implementationof Chord deplo/ed on the Internet. The
Chord nodesare at ten sites on a subsetof the RON test-bed
in the United States[1], in California, Colorado,Massachusetts,
New York, North Carolina,andPennsylania. The Chordsoftware
runson UNIX, usesl160-bitkeys obtainedfrom the SHA-1 cryp-
tographichashfunction, and usesTCP to communicatebetween
nodes. Chordrunsin the iterative style. TheseChord nodesare
partof anexperimentaldistributedfile system7], thoughthis sec-
tion considersonly the Chordcomponentf the system.

Figure 13 shavs the measuredatengy of Chordlookupsover a
rangeof numbersof nodes. Experimentswith a numberof nodes
larger than ten are conductedby running multiple independent
copiesof the Chord software at eachsite. This is differentfrom
running O(log N) virtual nodesat eachsite to provide goodload
balancerather theintentionis to measurdnow well ourimplemen-
tationscalesventhoughwe do nothave morethanasmallnumber
of deployednodes.

For eachnumberof nodesshavn in Figure 13, eachphysical
site issues16 Chord lookupsfor randomly chosenkeys one-by-
one. The graphplots the median,the 5th, andthe 95th percentile
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Figure 13: Lookup latencyonthe Inter net prototype,asa func-
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of lookuplateng. The medianlateny rangesrom 180to 285ms,
dependingon numberof nodes.For the caseof 180nodes a typi-
cal lookup involvesfive two-way messagexchangesfour for the
Chordlookup, anda final messagéo the successonode. Typical
round-trip delaysbhetweensitesare 60 milliseconds(as measured
by pi ng). Thusthe expectedookuptime for 180 nodesis about
300 milliseconds,which is closeto the measurednedianof 285.
The low 5th percentilelatenciesare causedby lookupsfor keys
close(in ID spacel}o thequeryingnodeandby queryhopsthatre-
mainlocalto thephysicalsite. Thehigh 95thpercentilesarecaused
by lookupswhosehopsfollow high delaypaths.

The lessonfrom Figure 13 is thatlookup latengy grows slowly
with the total numberof nodes,confirming the simulationresults
thatdemonstrat€hords scalability

7. Future Work

Basedon our experiencewith the prototypementionedin Sec-
tion 6.6, we would like to improve the Chorddesignin the follow-
ing areas.

Chord currently hasno specificmechanisnto heal partitioned
rings; suchringscouldappeatocally consistento the stabilization
procedure.Oneway to checkglobal consisteng is for eachnode
n to periodically ask other nodesto do a Chordlookup for n; if
the lookup doesnot yield noden, theremay be a partition. This
will only detectpartitionswhosenodesknow of eachother One
way to obtainthisknowledgeis for every nodeto know of thesame
small set of initial nodes. Another approachmight be for nodes
to maintainlong-termmemoryof a randomsetof nodesthey have
encountereéh the past;if a partitionforms,therandomsetsin one
partitionarelikely to includenodesfrom the otherpartition.

A maliciousor buggy setof Chordparticipantscould presentan
incorrectview of the Chordring. Assumingthat the dataChord
is beingusedto locateis cryptographicallyauthenticatecthis is a
threatto availability of dataratherthanto authenticity The same
approachusedabove to detectpartitionscould helpvictims realize
that they are not seeinga globally consistentview of the Chord
ring.

An attacler couldtargetaparticulardataitemby insertinganode
into the Chordring with an ID immediatelyfollowing the item’s
key, andhaving the nodereturnerrorswhenasled to retrieve the
data.Requiring(andchecking)thatnodesuselDs derivedfrom the
SHA-1 hashof their IP addressemalkesthis attackharder

Even log N messageper lookup may be too mary for some

applicationsof Chord, especiallyif eachmessagenustbe sentto
arandominternethost. Insteadof placingits fingersat distances
thatareall powersof 2, Chordcouldeasilybe changedo placeits
fingersat distanceghatareall integer powversof 1 + 1/d. Under
suchaschemeasingleroutinghopcoulddecreas¢hedistanceo a
queryto 1/(1 + d) of theoriginal distancemeaninghatlog, , ; N
hopswould sufiice. However, the numberof fingersneededvould
increasdo log N/(log(1 + 1/d) = O(dlog N).

A differentapproachto improving lookup lateny might be to
usesener selection.Eachfingertableentry could pointto thefirst
k nodesin that entry’s interval on the ID ring, and a nodecould
measurehe network delayto eachof the £ nodes. The k nodes
are generallyequialentfor purposesf lookup, so a nodecould
forwardlookupsto theonewith lowestdelay Thisapproaciwould
be mosteffective with recursve Chordlookups,in whichthe node
measuringhe delaysis alsothe nodeforwardingthelookup.

8. Conclusion

Marny distributed peerto-peer applicationsneedto determine
the nodethat storesa dataitem. The Chord protocol solves this
challengingproblemin decentralizednanner It offers a powver
ful primitive: given a key, it determineghe noderesponsibleor
storingthe key’s value,anddoesso efficiently. In the steadystate,
in an N-nodenetwork, eachnode maintainsrouting information
for only aboutO(log V) othernodesandresolhesall lookupsvia
O(log N) message$o othernodes.Updatesto the routing infor-
mationfor nodedeaving andjoining requireonly O(log® N) mes-
sages.

Attractive featuresof Chordincludeits simplicity, provablecor
rectnessandprovable performancesvenin the faceof concurrent
nodearrivalsanddepartureslt continuego function correctly al-
beit at degradedperformancewhen a nodes informationis only
partially correct. Our theoreticalanalysis simulations,andexper
imentalresultsconfirmthat Chordscaleswell with the numberof
nodesrecoersfrom large numbersof simultaneousodefailures
andjoins, andanswersnostlookupscorrectlyeven during recor-
ery.

We believe that Chord will be a valuablecomponentfor peer
to-peerlarge-scaldaistributedapplicationssuchascooperatie file
sharing,time-sharedwailable storagesystemsdistributedindices
for documentand service discovery, and large-scaledistributed
computingplatforms.
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