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Publish/subscribe is a distributed interaction paradigm well adapted to the deployment of scalable and
loosely coupled systems.

Apache Ka�a and RabbitMQ are two popular open-source and commercially-supported pub/sub systems
that have been around for almost a decade and have seen wide adoption. Given the popularity of these two
systems and the fact that both are branded as pub/sub systems, two frequently asked questions in the relevant
online forums are: how do they compare against each other and which one to use?

In this paper, we frame the arguments in a holistic approach by establishing a common comparison
framework based on the core functionalities of pub/sub systems. Using this framework, we then venture
into a qualitative and quantitative (i.e. empirical) comparison of the common features of the two systems.
Additionally, we also highlight the distinct features that each of these systems has. A�er enumerating a set of
use cases that are best suited for RabbitMQ or Ka�a, we try to guide the reader through a determination table
to choose the best architecture given his/her particular set of requirements.

1 INTRODUCTION
�e Internet has considerably changed the scale of distributed systems. Distributed systems now
involve thousands of entities �� potentially distributed all over the world �� whose location and
behavior may greatly vary throughout the lifetime of the system. �ese constraints underline the
need for more �exible communication models and systems that re�ect the dynamic and decoupled
nature of the applications. Individual point-to-point and synchronous communications lead to
rigid and static applications, and make the development of dynamic large-scale applications cum-
bersome [15]. To reduce the burden of application designers, the glue between the di�erent entities
in such large-scale se�ings should rather be provided by a dedicated middleware infrastructure,
based on an adequate communication scheme. �e publish/subscribe interaction scheme provides
the loosely coupled form of interaction required in such large scale se�ings [15].

Apache Ka�a [1] and RabbitMQ [4] are two popular open-source and commercially-supported
pub/sub systems (by Con�uent Inc. and Pivotal) that have been around for almost a decade and
have seen wide adoption in enterprise companies.

Despite commonalities, these two systems have di�erent histories and design goals, and distinct
features. For example, they follow di�erent architectural models: In RabbitMQ, producers publish
(batches of) message(s) with a routing key to a network of exchanges where routing decisions
happen, ending up in a queue where consumers can get at messages through a push (preferred) or
pull mechanism. In Ka�a producers publish (batches of) message(s) to a disk based append log that
is topic speci�c. Any number of consumers can pull stored messages through an index mechanism.

Given the popularity of these two systems and the fact that both are branded as pub/sub systems,
two frequently asked questions in the relevant online forums are: how do they compare against
each other and which one to use?

∗�is report is intended to be a “living” document on the subject, i.e., it will be continuously re�ned to re�ect new content
as well as major developments in the two systems under consideration. �e �rst public release of this report [13] appeared
in the proceedings of the ACM Conference on Distributed and Event-Based Systems (DEBS), June 2017. �e current release
is based on August 2017 snapshot.
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While one can �nd several ad-hoc recommendations (some based on pointed benchmarks) on
the web, we found these hard to generalize to other applications and believe they do not do justice
to the systems under discussion. More speci�cally, (i) the bigger context of such analysis, e.g.,
qualitative comparison or the distinct features of each system is o�en overlooked, (ii) due to the
fast pace of developments, in particular in the case of Ka�a, some of the reported results are stale
and no longer valid, and (iii) it is di�cult to compare results across di�erent experiments.
In this paper, we frame the arguments in a more holistic approach. More concretely, we start

(in Section 2) with a brief description of the core functionalities of publish/subscribe systems as
well as the common quality-of-service guarantees they provide. We then (in Section 3) give a
high-level description of both Apache Ka�a and RabbitMQ. Based on the framework established in
Section 2, we venture into a qualitative (in Section 4) and quantitative (in Section 5) comparison of
the common features of the two systems. In addition to the common features, we list the important
features that are unique to either of the two in Section 6. We next enumerate a number of use case
classes that are best-suited for Ka�a or RabbitMQ, as well as propose options for a combined use
of the two systems in Section 7. �ere, we also propose a determination table to help choose the
best architecture when given a particular set of requirements. Finally, we conclude the paper in
Section 8.

2 BACKGROUND: PUB/SUB SYSTEMS
In this section we highlight the main concepts of the publish/subscribe paradigm, its required and
desired guarantees as well as some of its realizations out there.
�e primary purpose of this section is to establish a common framework/language that will be

used in the rest of the paper. Knowledgeable readers may skip it.

2.1 Core Functionalities
Publish/subscribe is a distributed interaction paradigm well adapted to the deployment of scalable
and loosely coupled systems.

Decoupling the publishers and subscribers is arguably the most fundamental functionality of a
pub/sub system. Eugster et al. [15] have decomposed the decoupling that the pub/sub coordination
scheme provides along the following three dimensions:

(1) Entity decoupling: publishers and consumers do not need to be aware of each other. �e
pub/sub infrastructure terminates the interaction in the middle.

(2) Time decoupling: �e interacting parties do not need to be actively participating in the
interaction, or even stronger, switched on, at the same time.

(3) Synchronization decoupling: the interaction between either producer or consumer and
the pub/sub infrastructure does not synchronously need to block the producer or consumer
execution threads, allowing maximum usage of processor resources at producers and
consumers alike.

Another core functionality of pub/sub systems is routing logic (also known as subscription
model) which decides if and where a packet that is coming from a producer will end up at a
consumer. �e di�erent ways of specifying the events of interest have led to several subscription
schemes, that balance �exibility against performance. �e two main types of routing logic are the
following:

• A topic-based subscription is characterized by the publisher statically tagging the message
with a set of topics, that can then be used very e�ciently in the �ltering operation that
decides which message goes to which consumer. Most systems allow topic names to contain



wildcards, and topic names can have hierarchy to enhance the �ltering capabilities, at the
expense of higher processor load.
• A content-based subscription does not need the producer to explicitly tag the message
with routing context. All data and metadata �elds of the message can be used in the
�ltering condition. Consumers subscribe to selective events by specifying �lters using a
subscription language. �e �lters de�ne constraints, usually in the form of name-value
pairs of properties and basic comparison operators, which identify valid events. Constraints
can be logically combined (and, or, etc.) to form complex subscription pa�erns. Evaluating
these complex �lters comes at a high processing cost.

2.2 �ality-of-Service Guarantees
In addition to the aforementioned core functionalities of pub/sub systems, they are also de�ned by
a relatively large set of required and desired guarantees that are generally referred to as�ality-of-
Service (QoS) guarantees [9, 11, 15].
For sake of simplicity, we have grouped the most important pub/sub QoS guarantees into �ve

separate categories and will explain them in the following sections.
It should be noted that an important assumption in this section is the distributed nature of

modern pub/sub systems. Distribution is necessary (but not su�cient) to bring scalability. However,
it brings a number of technical problems that make the design and implementation of distributed
storage, indexing and computing a delicate issue [7].

2.2.1 Correctness. As proposed in [29], correctness behavior can be de�ned using three prim-
itives: no-loss, no-duplication, no-disorder. Building upon these primitives, the following two
criteria are relevant in pub/sub systems:

• Delivery Guarantees, the three common variants are:
– at most once (aka “best e�ort”; guarantees no-duplicates): in this mode, under normal

operating conditions, packets will be delivered, but during failure packet loss might
occur. Trying to do be�er than this will always cost system resources, so this mode
has the best throughput.

– at least once (guarantees no-loss): in this mode, the system will make sure that no
packets get lost. Recovery from failures might cause duplicate packets to be sent,
possibly out-of-order.

– exactly once (guarantees no-loss and no-duplicates): this requires an expensive end-
to-end two phase commit.

• Ordering Guarantees, the three common variants here are:
– no ordering: absence of ordering guarantees is an ideal case for performance.
– partitioned ordering: in this mode, a single partition can be de�ned for each message

�ow that needs to be consumed in-order. While more expensive than the previous
group, it can possibly have high performance implementations.

– global order: due to the synchronization overhead, imposing a global ordering guaran-
tee across di�erent channels requires signi�cant additional resources and can severely
penalize performance.

2.2.2 Reliability. denotes the ability of a distributed system to deliver it’s services even when
one or several of it’s so�ware of hardware components fail.
It de�nitely constitutes one of the main expected advantages of a distributed solution, based

on the assumption that a participating machine a�ected by a failure can always be replaced by
another one, and not prevent the completion of a requested task.



An immediate and obvious consequence is that reliability relies on redundancy of so�ware
components, network connections and data. Clearly, this has a cost.

2.2.3 Availability. Availability is the capacity of a system to maximize its uptime. Note that this
implicitly assumes that the system is already reliable: failures can be detected and repair actions
initiated.

2.2.4 Transactions. In messaging systems, transactions are used to group messages into atomic
units: either a complete sequence of messages is sent (received), or none of them is. For instance, a
producer that publishes several semantically related messages may not want consumers to see a
partial (inconsistent) sequence of messages if it fails during emission.

Similarly, a mission-critical application may want to consume one or several messages, process
them, and only then commit the transaction. If the consumer fails before commi�ing, all messages
are still available for reprocessing a�er recovery.

2.2.5 Scalability. �e concept of scalability refers to the ability of a system to continuously
evolve in order to support a growing amount of tasks. In the case of pub/sub systems, scalability
can have various dimensions e.g., consumers/producers, topics and messages.

2.2.6 E�iciency. Two common measures of e�ciency are the latency (or response time), and the
throughput (or bandwidth).

Latency. In any transport architecture, latency of a packet/message is determined by the serial
pipeline (i.e., sequence of processing steps) that it passes through.
Latency for any transport architecture can be de�ned as the time delay incurred by a packet

from the moment it enters to the moment it exits part of an architecture. In this paper, we will
primarily focus on latency inside a network node. When the transport architecture is distributed
over multiple nodes that are not collocated additional network latencies will need to be added.
Examples of the la�er case are applications that span end-to-end network topologies all the way
from edge to core networks, or involve geographical aggregation.

In pub/sub system, typically the main latency contributors are as follows:
• compute cycles needed for packet metadata handling (validating, routing, …), typically not
packet size dependent
• compute cycles needed for packet copy, typically packet size dependent
• storage access latency (write versus read, DRAM versus disk, sequential disk access versus
random disk access)
• persistence and ordering overhead in case of “at least once” and/or ordered delivery needs
to be guaranteed
• dequeueing latency (at consumer speed) due to the FIFO behavior of a queue which is not
empty

Latency can only be reduced by pipelining the packet transport over resources that can work
concurrently on the same packet in a series architecture (multiple processing cores, master DMA
engines in case of disk or network access,…) . It is not in�uenced by scaling out resources in
parallel.

�roughput. �roughput of a transport architecture is the number of packets (or alternatively,
bytes) per time unit that can be transported between producers and consumers. Contrary to latency,
throughput can easily be enhanced by adding additional resources in parallel.

For a simple pipeline throughput and latency are inversely proportional.

It is important to point out that both e�ciency and scalability o�en con�ict with other desirable



guarantees [15]. For instance, highly expressive and selective subscriptions require complex and
expensive �ltering and routing algorithms, and thus limit scalability. Similarly, strong availability
and delivery guarantees entail considerable overheads, due to cost a�ached to persistence and
replication and the fact that missed events must be detected and retransmi�ed.

2.3 Realizations
A large number of frameworks and libraries can be categorized as having pub/sub messaging
functionality. One approach to categorize them is to locate them on a complexity spectrum that
starts with lightweight systems with fewer features and ends with complex systems that o�er a
rich set of functionalities.
At the lightweight side of the spectrum, we �nd ZeroMQ, Finagle, Apache Ka�a, etc. Heavier

examples include the Java Message Service (JMS) implementations such as ActiveMQ, JBOSS
Messaging, Glass�sh, etc. AMQP 0.9, the popular and standardized pub/sub protocol has several
implementations such as RabbitMQ, Qpid, HornetQ, etc. Even more complex and feature-rich are
distributed RPC frameworks that include pub/sub, e.g., MuleESB, Apache ServiceMix, JBossESB,
etc.

3 HIGH-LEVEL DESCRIPTION
In this section we give a brief description of the Apache Ka�a and RabbitMQ systems. In particular,
we look at the history/context of their creation, their main design goals, as well as some notable
implementation and optimization details about them. Each of these aspects can help us gain further
insights about these systems and hence be�er explain their di�erences.

3.1 Apache Kafka
Ka�a was originally built at LinkedIn as its centralized event pipelining platform, replacing a
disparate set of point-to-point integration systems [18].

�e Ka�a team had initially explored a number of alternatives, most notably ActiveMQ, a popular
messaging system based on JMS. However, in production tests it ran into two signi�cant problems:
(i) if the queue backed up beyond what could be kept in memory, performance would severely
degrade due to heavy amounts of random I/O, (ii) having multiple consumers required duplicating
the data for each consumer in a separate queue.
�e conclusion was that messaging systems target low-latency se�ings rather than the high-

volume scale-out deployment that was required at LinkedIn. Consequently, they decide to build
a piece of custom infrastructure meant to provide e�cient persistence, handle long consumer
backlogs and batch consumers, support multiple consumers with low overhead, and explicitly
support distributed consumption while retaining the clean real-time messaging abstraction of
messaging systems.
�e resulting system is a scalable publish-subscribe messaging system designed around a dis-

tributed commit log [33]. High-throughput is one advantage of the design of log aggregation
systems over most messaging systems [18]. Data is wri�en to a set of log �les with no immediate
�ush to disk, allowing very e�cient I/O pa�erns.

Figure 1 shows the high-level architecture of Ka�a. Producers send messages to a Ka�a topic that
holds a feed of all messages of that topic. Each topic is spread over a cluster of Ka�a brokers, with
each broker hosting zero or more partitions of each topic. Each partition is an ordered write-ahead
log of messages that are persisted to disk. All topics are available for reading by any number of
consumers, and additional consumers have very low overhead.



Fig. 1. Kafka Architecture

Fig. 2. RabbitMQ (AMQP) Architecture

Ka�a has a very simple storage layout. Each partition of a topic corresponds to a logical log.
Physically, a log is implemented as a set of segment �les of approximately the same size (e.g., 1GB).
Every time a producer publishes a message to a partition, the broker simply appends the message
to the last segment �le.

Compared to the traditional pub/sub systems, the notion of a consumer in Ka�a is generalized to
be a group of co-operating processes running as a cluster. Each message in the topic is delivered to
one consumer in each of these consumer groups. As a result the partition is the unit of parallelism
of the topic and controls the maximum parallelism of the consumers. Furthermore, because each
partition has a sole consumer within its group, the consuming process can lazily record its own
position, rather than marking each message immediately, which is essential for performance. If the
process crashes before the position is recorded it will just reprocess a small number of messages,
giving at-least-once delivery semantics.



Batching Type Improvement Default �reshold
Producer 3.2x 200 messages or 30 seconds
Broker 51.7x 50000 messages or 30 seconds
Consumer 20.1x 1 megabyte

Table 1. Improvements due to batching in Kafka [18].

Message producers balance load over brokers and sub-partitions either at random or using some
application-supplied key to hash messages over broker partitions. �is key-based partitioning has
two uses. First the delivery of data within a Ka�a partition is ordered but no guarantee of order is
given between partitions. Consequently, to avoid requiring a global order over messages, feeds that
have a requirement for ordering need to be partitioned by some key within which the ordering
will be maintained. �e second use is in support of a routing/�ltering feature: consumers can
partition a data stream by a key such as the user id, and perform simple in-memory session analysis
distributed across multiple processes relying on the assumption that all activity for a particular
user will be sticky to one of those consumer processes. Without this guarantee distributed message
processors would be forced to materialize all aggregate state into a shared storage system, likely
incurring an expensive look-up round-trip per message.

Finally, it is worth noting that originally Ka�a relied heavily on Apache Zookeeper [19] for the
implementation of its control plane logic, but the Zookeeper reliance is trimmed down with every
release. Around v0.8.2, consumer management was transferred from Zookeeper to a coordinator
inside the broker. Still managed by Zookeeper are controller and cluster management, topic and
partition management, in-sync data replication and static con�gurations like quotas and ACLs.

In summary, to meet the high-throughput requirements, Ka�a has departed from the classic
principles of messaging systems in a few ways:

• It partitions up data so that production, brokering, and consumption of data are all handled
by clusters of machines that can be scaled incrementally as load increases. Ka�a guarantees
that messages from a single partition are delivered to a consumer in order. However, there
is no guarantee on the ordering of messages coming from di�erent partitions.
• Messages are not “popped” from the log, but can be replayed by the consumers (e.g. when
handling consumer application errors)
• Additionally, reader state is kept only by the consumers, implying that message deletion

can only be based on a manually-tuned retention policy, expressed either in message count
or message age.

Furthermore, it also applies a number of very e�ective optimization techniques, most notably:

• As shown in Table 1, it uses batching at all stages of the pipeline (production, brokering,
and consumption) with signi�cant throughput improvements.
• It relies on persistent data structures and OS page cache. �e operating system�s read-

ahead strategy is very e�ective for optimizing the linear read pa�ern of consumers which
sequentially consume chunks of log �les. �e bu�ering of writes naturally populates this
cache when a message is added to the log, and this in combination with the fact that most
consumers are not far behind, means a very high cache hit ratio making reads nearly free
in terms of disk I/O.



3.2 RabbitMQ
RabbitMQ is primarily known and used as an e�cient and scalable implementation of the Advanced
Message�euing Protocol (AMQP). Hence, below we �rst give a short introduction of AMQP, and
then brie�y explain the RabbitMQ implementation (and extensions) of it.

3.2.1 AMQP. AMQP was born out the need for interoperability of di�erent asynchronous mes-
saging middlewares. More concretely, while various middleware standards existed for synchronous
messaging (e.g., IIOP, RMI, SOAP, etc), the same did not hold true in the world of asynchronous
messaging, however, in which several proprietary products exist and use their own closed protocols
(e.g. IBM Websphere MQ and Microso� Message �euing) [32]. Java Message Service (JMS) speci-
�cation was arguably the best-known standard in the asynchronous messaging world. However,
it is merely an interface standard and does not specify a standard protocol. Furthermore, JMS
was limited to Java, which is only one viable implementation technology within the messaging
middleware domain.

What is now known as AMQP originated in 2003 at JPMorgan Chase. From the beginning AMQP
was conceived as a co-operative open e�ort. JPMorgan Chase partnered with Red Hat to create
Apache Qpid. Independently, RabbitMQ was developed in Erlang by Rabbit Technologies.

Around 2011, the AMQP standard bifurcated away from the widely-adopted v0.9.1 (a slight
variation of version 0.9 [31]) functionality with the creation of AMQP 1.0. Compared to Java
Message Service (JMS), which just de�nes an API, AMQP de�nes a binary protocol implementation
that guarantees interoperability between di�erent parties implementing the protocol independently.

�e design of AMQP has been driven by stringent performance, scalability and reliability require-
ments from the �nance community. However, its use goes far beyond the the �nancial services
industry and has general applicability to a broad range of middleware problems.
As shown in Figure 2, AMQP takes a modular approach, dividing the message brokering task

between exchanges and message queues [32]:
• An exchange is essentially a router that accepts incoming messages from applications and,
based on a set of rules or criteria, decides which queues to route the messages to.
• A message queue stores messages and sends them to message consumers. �e storage

medium�s durability is entirely up to the message queue implementation –message queues
typically store messages on disk until they can be delivered– but queues that store messages
purely in memory are also possible.

Joining together exchanges and message queues are bindings, which specify the rules and
criteria by which exchanges route messages. Speci�cally, applications create bindings and associate
them with message queues, thereby determining the messages that exchanges deliver to each
queue.

AMQP assumes a stream-based transport (normally TCP) underneath it. It transmits sequential
frames over channels, such that multiple channels can share a single TCP connection. Each
individual frame contains its channel number, and frames are preceded by their sizes to allow the
receiver to e�ciently delineate them. AMQP is a binary protocol.

In a multi-threaded environment, individual threads are typically assigned their own channel.

3.2.2 RabbitMQ Implementation and Extensions of AMQP. RabbitMQ, by default, supports AMQP
0.9.1 and can support AMQP 1.0 through a plugin.
RabbitMQ goes beyond the AMQP guarantees in a number of aspects: it has more e�cient

acknowledgment mechanism for the publishers, has be�er-de�ned transactional behavior, has
be�er support for asynchronous batch transfer, supports a degree of coupling between producers
and consumers (i.e the �ow control). For a detailed list of extensions, see [2].



RabbitMQ is implemented in Erlang, which implies it uses the Actor Model as communication
primitive between lightweight Erlang processes. It therefore pro�ts from the Erlang Open Telecom
Platform (OTP) infrastructure which greatly facilitates the creation and management of high-
availability architectures. Erlang and the actor model are the prime reasons for the scalability
capabilities of RabbitMQ in terms of number of topics and queues, and bring clustering capabilities
at a very low design overhead.

Compared to Ka�a, RabbitMQ is much closer to the classic messaging systems. More speci�cally,
RabbitMQ: (i) takes care of most of the consumption bookkeeping, (ii) its main design goal is to
handle messages in DRAM memory, (iii) the queue logic is optimized for empty-or-nearly-empty
queues and the performance degrades signi�cantly if messages are allowed to accumulate

1

[5].

4 COMMON FEATURES: QUALITATIVE COMPARISON
In this section we give a qualitative comparison of Ka�a and RabbitMQ across a number of common
pub/sub features.
It should be noted that for the sake of simplicity, we only consider recent stable releases of the

two systems (i.e. Kafka 0.10 and RabbitMQ 3.5).

4.1 Time Decoupling
Both systems can be used to bu�er a large batch of messages that needs to be consumed at a later
time or at a much lower rate than it is produced.

To this end, RabbitMQwill store the messages in DRAM as long as possible, but once the available
DRAM is completely consumed, RabbitMQ will start storing messages on disk without having a
copy available in DRAM, which will severely impact performance.

Ka�a, on the other hand, was speci�cally designed with the various consumption rates require-
ment in mind and hence is much be�er positioned to handle a wider scale of time decoupling.

4.2 Routing Logic
RabbitMQ inherits the routing logic of AMQP and hence can be very sophisticated. Stock RabbitMQ
already provides for a number of di�erent exchange types, most notably:

• a very �exible topic-based exchange (of type topic) that supports multipart “a.b.c” topic-
based routing with wildcard support (“*” for one part and “#” for an arbitrary number of
parts),
• a content-based exchange (of type header).

Since RabbitMQ provides an API to create additional exchanges, routing logic can be anything
you need. For example, the RabbitMQ community has provided additional exchange de�nitions,
most importantly support for load balancing [3, 28].

Another relevant and useful feature in RabbitMQ is Alternate Exchange which allows clients to
handle messages that an exchange was unable to route (i.e. either because there were no bound
queues our no matching bindings).
With Ka�a, the choice is more limited: it supports a basic form of topic-based routing. More

speci�cally, the producer controls which partition it publishes messages to. �is can be done at
random (i.e. load balancing) or by some partitioning function by allowing the user to specify a

1 Probably due to cross-fertilization from Ka�a, RabbitMQ introduced the concept of Lazy�eues in v3.6. Lazy�eues
store messages immediately to disk, and only read them back in memory when consumers start reading from the queue.



partition-by key and using this to hash to a partition. �e partition function can be overridden by
the user.

4.3 Delivery Guarantees
RabbitMQ and Ka�a di�er in their notion of at least once semantics. Since individual packets from
a batch can fail, recovery from failures can have impact on the order of packets. Depending on the
application, order might be important, so it makes sense to split this up in

(1) at least once without order conservation: Ka�a cannot preserve order when sending to
multiple partitions.

(2) at least once with order conservation: RabbitMQ sorts messages when writing them to
queue structures, meaning that lost messages can be correctly delivered in order without
the need to resend the full batch that lost 1 or more messages. Ka�a will preserve order
under conditions speci�ed in Section 4.4.

It should be noted that using standard AMQP 0.9.1, the only way to guarantee that a message is
not lost is by using transactions which are unnecessarily heavyweight and drastically decrease
throughput. To remedy this, in RabbitMQ a con�rmation mechanism was introduced which mimics
the consumer acknowledgments mechanism already present in the protocol.

Guaranteeing that a packet gets delivered involves the concept of “ownership transfer” between
the di�erent components of the architecture. A guarantee is not absolute: we introduce the notion
of failure probability over time and the failure rate λ of individual components and of the complete
packet transfer chain. Failure probability and rate can be reduced by providing replication.

Fig. 3. reliable transfer

In the following, producer and consumer failures are out of scope ( we assume λ = 0 ).
�e scenarios for RabbitMQ and Ka�a mainly digress in the generation of publisher con�rms,

the consumer interaction and message deletion aspects.
• t1, the producer owns a message to be forwarded and delivers it to RabbitMQ/Ka�a.
• t2, RabbitMQ “handles” the message; the actual logic of this handling is case-speci�c:

(1) for unroutable messages, the broker will issue a con�rm once the exchange veri�es a
message would not route to any queue,

(2) for routable messages, the con�rmation is issued once the message has been accepted
by all the queues,

(3) for persistent messages routed to durable queues, this means persisting to disk, and
(4) for mirrored queues, this means that all mirrors have accepted the message
Ka�a appends the message to the relevant partition of the append log on the master broker
node A and potentially on a redundant broker node B



• t3, a coordinated ACK from node A (and if applicable, B) is sent to the producer - ownership
now moved to RabbitMQ/Ka�a and the producer can delete the message
• t4, the consumer gets the message from RabbitMQ/Ka�a
• t5 [RabbitMQ speci�c] the consumer sends an ACK to node A (and if applicable, B) -
ownership now moved to the consumer and the broker can delete the message. Note
that typically every consumer will read from a dedicated queue, so the broker will keep
ownership of messages that need to go to multiple consumers if all ACKS are not yet
received.
• t5 [Ka�a speci�c] Ka�a is not keeping state, so has no way of understanding ownership

moved to the consumer. It will keep hold of the message until a con�gured timeout expires
(typically several days).

RabbitMQ improves on AMQP and o�ers the possibility to publish batches of messages with
individual ACK/NACK replies indicating that the message safely made it to disk (i.e. fsynced2 to
the storage medium).

�e acknowledgment behavior of Ka�a (request.required.acks) can be chosen as 0 for best e�ort,
1 to signal the producer when the leader has received the packet but did not commit it to disk
(meaningful while running under replication since otherwise packet could get lost), or −1 to signal
the producer when a quorum has received the packet but did not commit it to disk (should not be a
problem unless all replicas run in the same environment, which implies they could all go down at
once caused by e.g. a power failure).

While running without replication, Ka�a in its default con�guration does not wait with sending
ACKs until an fsync has occurred and therefore messages might be lost in the event of failure. �is
can be changed by con�guration, at the expense of a reduction in throughput.

4.4 Ordering Guarantees
RabbitMQwill conserve order for �ows3 using a single AMQP channel. It also reorders retransmi�ed
packets inside its queue logic so that a consumer does not need to resequence bu�ers. �is implies
that if a load-balancer would be used in front of RabbitMQ (e.g. to reach the scalability of what can
be accomplished inside Ka�a with partitions), packets that leave the load-balancer on di�erent
channels will have no ordering relation anymore.

Ka�a will conserve order only inside a partition. Furthermore, within a partition, Ka�a guaran-
tees that a batch of messages either all pass or all fail together. However, to conserve inter-batch
order, the producer needs to guarantee that at most 1 produce request is outstanding, which will
impact maximum performance.

4.5 Availability
Both RabbitMQ and Ka�a provide availability via replication.
RabbitMQ Clusters can be con�gured to replicate all the exchange and binding information.

However, it will not automatically create mirrored queues (RabbitMQ’s terminology for replicated
queues) and will require explicit se�ing during queue creation.

For Ka�a, availability requires running the system with a suitably high replication factor.
As stated by the CAP theorem [17], in any architecture based on replication, split-brain problems

can arise due to fault induced network partitions. For an in-depth description of the availability

2the OS call fsync() transfers all modi�ed data in DRAM to the disk device so that all changed information can be retrieved
even a�er the system crashed or was restarted
3a sequence of messages that is to be processed without insertion, deletion or reordering



models (as well as CAP theorem analysis) of Ka�a and RabbitMQ see the corresponding episodes
in the Jepsen series [20, 21].

4.6 Transactions
AMQP transactions only apply to publishes and acks. RabbitMQ has additionally made rejection
transactional. On the consuming side, the acknowledgments are transactional, not the consuming
of the messages themselves. AMQP guarantees atomicity only when transactions involve a single
queue. RabbitMQ provides no atomicity guarantees even in case of transactions involving just
a single queue, e.g. a fault during commit can result in a sub-set of the transaction’s publishes
appearing in the queue a�er a broker restart. Note that these are not transactions in the strict ACID
sense, since some interaction with the publisher or consumer is required. Take e.g. a producer
publishing a batch. If any of the messages fails, the producer gets the chance to republish these
messages, and RabbitMQwill insert them in the queue in order. A�er which the publisher is noti�ed
that the failing messages did make it and can consider the transaction complete.

Ka�a currently does not support transactions. However, a proposal to extend it with this feature
in the future releases has recently been adopted.

4.7 Multicast
Applications o�en need to send the same information to multiple destinations.

RabbitMQ supports multicast by providing a dedicated queue per individual consumer. As a
result, the only impact on the system is that there is an increased number of bindings to support
these individual queues. RabbitMQ has a view of which consumers have already taken ownership
of each message, so can easily decide when it can �ush the message from its system. In fan-out
cases, RabbitMQ keeps per-queue indexes and metadata but only one copy of the message bodies
for all queues.

In Ka�a, only one copy of messages within a topic is maintained in the brokers (in non-replicated
se�ings); however, the multicast logic is handled completely at the consumer side. Each consumer
can fetch messages out of Ka�a based on the message index. Ka�a does not know when all
consumers have taken ownership of the message, so it simply keeps the message for a con�gurable
amount of time or size.

4.8 Dynamic Scaling
For RabbitMQ, adding additional nodes to running clusters or removing a node from a cluster is
well supported. �ese additional nodes will be able to become master for newly created queues, and
will accept channels allowing to publish to any exchange or consume from any queue, but cannot
be used to re-distribute master queue assignments of existing queues without manual intervention.
Adding nodes in a RabbitMQ cluster is transparent for consumers - these still preferably consume
from the master queue, although consuming from any other cluster node works, at the expense of
additional internal networking load since the packets reside on the master queue.

In Ka�a, upon adding new nodes to the cluster, the user can decide to move existing partitions
to the new node. In that case, a new replica is created on the new node and once it has caught up,
the old replica of the partition can be deleted. �is can be done online while the consumers are
consuming. Adding nodes to a Ka�a cluster is not transparent for consumers, since there needs to
be a mapping from partitions to consumers in a consumer group. Removing a node can be done by
�rst redistributing the partitions on that node to the remaining nodes.



5 COMMON FEATURES: QUANTITATIVE COMPARISON
In this section we use empirical methods to quantitatively compare the e�ciency/performance of
RabbitMQ and Ka�a. �roughout this section, we base our arguments predominantly on our own
experimental results. However, in a few cases where the required infrastructure/scenario is not
easily replicable, we refer to existing results reported by others.
As explained earlier in Section 2.2.6, e�ciency is primarily measured in terms of latency and

throughput. Hence, we organize the content of this section accordingly: latency results are discussed
in Section 5.1 and throughput results in Section 5.2.
In addition to the system and e�ciency measures aspects, we include two other important

dimensions in our experiments: (i) delivery guarantees, i.e. at most once vs at least once, (ii)
availability, i.e., replicated queues vs non-replicated queues. As discussed in Section 2, these have
important implications for e�ciency.

Finally, it should be noted that while we have designed and conducted a wide set of experiments,
a thorough empirical study of these two systems in beyond the scope of this paper and requires
considerations of how these systems are used in the larger application architecture.

Experimental setup. Our experiments where conducted on a Linux server with 24 cores (Intel
Xeon X5660 @ 2.80GHz) and 12GB of DRAM running a 3.11 kernel. �e hard disk used was a
WD1003FBYX-01Y7B0 running at 7200 rpm. Note that while use of multiple machines can make it
easier to increase bandwidth to disk, but it introduces network layer e�ects that make it harder to
de�ne the system under test.
Both for Ka�a and RabbitMQ, we used the test tools provided by the respective distributions 4.

�e versions of RabbitMQ and Ka�a used in the experiments were 3.5.3 and 0.10.0.1, respectively. It
should be noted that all our Ka�a experiments have been carried out using the default con�guration.
As nicely laid out in this recent white paper [10], these default se�ings favor latency over throughput
(most notably in the con�guration parameter linger.ms which is by default set to 0, meaning the
producer will send as soon as it has data to send).

All tests ran for 60 seconds a�er test setup, with results collection starting a�er 30 seconds. All
packet generators were con�gured to produce maximal load. �e source code of the test tools
provides succinct embedded documentation of all the tunable parameters.

Whenever multiple instances of a broker were required, these were started on the same machine,
e�ectively eliminating the majority of network latency e�ects.

In addition to the latency and throughput results reported below, we also monitored both the core
utilization (never fully utilized, explicitly reported in some �gures) and the memory consumption
(never exceeded 13.4 % for RabbitMQ or 29.5% for Ka�a).

Finally, since the median error across di�erent runs were overall low (less than 10%), they are
not depicted in the graphs.

5.1 Latency Results
We �rst start with the at most once mode, as it always delivers the best latency results. We then
show the at least once mode results, demonstrating the cost of providing a stronger delivery
guarantee.

5.1.1 Latency in At Most Once Mode. For RabbitMQ, the serial pipeline handling a packet mainly
consists of an Erlang process terminating the protocol between the producer and the broker, a
second Erlang process keeping the queue state and a third Erlang process transferring the packet

4 For RabbitMQ, it’s part of the Java client, under com.rabbitmq.examples.PerfTest and for Ka�a, it’s part of the Ka�a tools
under ka�a.tools.



mean max
with and without replication 1–4 ms 2–17 ms

(a) RabbitMQ

50 percentile 99.9 percentile
without replication 1 ms 15 ms
with replication 1 ms 30 ms

(b) Kafka

Table 2. Latency Results when reading from DRAM

from the queue to the consumer. RabbitMQ latency results are optimal if the broker is allowed to
have a window of outstanding uncon�rmed publishes5 (we measured with a window of 10).
For Ka�a, the serial pipeline handling a packet is dominated by the storage access latency. As

described in Section 3.1, Ka�a directly uses the OS cache associated to the disk and, ideally, when
reads occur instantly a�er the write, chances are high that the packet will still be available in that
cache.
Our measurements of RabbitMQ and Ka�a latency measurements are summarized in Table 2.

Since the test tools of Ka�a and RabbitMQ report di�erent statistical summaries, in this table we
have selected a subset of those that are important and semantically comparable. Our results are
largely consistent with those of a similar set of experiments reported in [30].
Here are two important conclusions that can be drawn from these results: (i) Both of these

systems can deliver millisecond-level low-latency guarantees. �e results for Ka�a seem a li�le
be�er, however, as we discuss below, Ka�a is operating in an ideal se�ing (zero cache miss) and in
a more realistic se�ing RabbitMQ outperforms it. (ii) Replication does not drastically hamper the
results. More speci�cally, in case of RabbitMQ the results are almost identical. For Ka�a, it only
appears a�er the median value, with a 100% increase in the 99.9 percentile.
�e results reported in Table 2 are for normal (in case of Ka�a, ideal) operating conditions.

Below, we discuss the implications of operating beyond the normal/ideal conditions.
When RabbitMQ is running close to maximum load (an exceptional se�ing), the broker will

start to write packets to disk to free up memory it needs for computation, e�ectively meaning the
latency �gures will rapidly deteriorate.
In case of Ka�a, when consumers are slower then producers (which can be a common case),

packets will have to be transferred from disk to cache before a read completes. Even with an
architecture that pro�ts from sequential disk access, the latency values will rapidly increase, not
only for the slow consumer where the e�ect is not important but also for fast consumers that will
see their cache trashed. �is is demonstrated in in Figure 5 (from an experiment reported in [8])
where it shows the e�ect of cache miss reads when approximately 30% of the packets have to be
fetched from disk, resulting in a latency increase of more than an order of magnitude.
Another factor that can severely impact Ka�a latencies is the fact that Ka�a runs on the JVM

and large messages can cause longer garbage collection pauses as Ka�a allocates large chunks.
�is will show up as outliers in the latency distribution. �is can also negatively a�ect the control
plane, up to the point where longer timeout values for Zookeeper (zookeeper.session.timeout.ms)
need to be con�gured so that Ka�a does not abandon the ZooKeeper session.

5h�ps://www.rabbitmq.com/con�rms.html
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Fig. 4. Throughput as function of record size

5.1.2 Latency in At Least Once Mode. RabbitMQ latency is not really impacted by switching to
a higher level of reliability: the packet will be wri�en out to disk but since it is also available in
memory this does not impact how fast it can be consumed.
For Ka�a, the latency increases in case of replication since Ka�a only delivers messages to

consumers when they are acknowledged by a quorum of the active replicas (this is needed since
Ka�a does not enforce an fsync per packet on any of the replicas, so a Ka�a packet is only protected
by the fact it is kept by multiple machines).
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Summary. In case of RabbitMQ, up to medium level of load, the latency for both at most once
and at least once modes is below 10 ms.
In case of Ka�a, on the other hand, if it can read from OS cache, its latency for at most once

mode is below 10 ms, and about twice as large for the at least once mode. However, when it needs
to read from disk, its latency can grow by up to an order of magnitude to around 100 ms.

5.2 Throughput Results
RabbitMQ parallelization inside the node boils down to multithreading with Erlang actors, and
parallelization across nodes can be either tra�c partitioning across standalone nodes or tra�c
distribution inside clusters. Ka�a parallelization inside the node is also due to multithreading
(in�uenced by producer and consumer count). Ka�a parallelization across nodes is due to partitions,
see Section 3.1. �e performance tests that we have run only consider a single node, so they need
to be adjusted with a suitable factor expressing the external parallelization.

5.2.1 Throughput in At Most Once Mode. �roughput for RabbitMQ is optimal if the broker is
con�gured to allow an unlimited number of uncon�rmed publishes ( conf irm == −1 ).

Figure 4a shows the impact of record size (in bytes) on throughput for a single RabbitMQ node.
In these �gures, pps stands for packets per second. As is to be expected, throughput decreases for
larger packets (in addition to the packet switching e�ort which does not depend on the size, the
byte copying operation scales linearly with the record size). Performance is optimal in the case of
unlimited outstanding con�rmed publishes. Replication lowers the throughput.
As reported in [24], using a clustering setup on Google Compute Engine consisting of 32 node,

using 186 queues, 13000 consumers and producers and a load balancer in front, RabbitMQ was able
to sustainably handle over 1.3M pps.
While measuring throughput of Ka�a, the three important factors are: record size, partition

count, and topic count. We have conducted di�erent experiments to investigate the impact of each
of these factors. Our �ndings are described below.
Figure 4b shows how the record size in�uences the throughput (in MBps or pps) of Ka�a. �e

throughput in packets curve has a similar shape as what we found for RabbitMQ. When we plot
the throughput in bytes per unit of time, we observe an almost linear relation to the record size:
copying packets in Ka�a is the dominant operation.

Figure 6 shows how the throughput of Ka�a is impacted by the number of topics. It is important
to point out that all these topics are active topics, each served by an individual producer. Based
on this graph, it is a linear relation, however, the linearity in topics/producers has a hard limit of
about 8 producers in our experimental setup. Machine utilization at that peak was Ka�a 3.25 cores,



all producers 10 cores, all consumers 4 cores and about 6 cores idle. With a higher topic count,
performance diminishes.
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Ka�a up to about v0.8.2 was not designed to handle a large number of topics (with a hard limit
around 10000 due to Zookeeper limits) as is evident from test results in [14]. �ese tests di�er from
ours in 2 ways: they use a partition count that maximizes throughput and not every topic was
loaded by test generators. �e results show a rapid deterioration in throughput for topic counts
between 100 and 1000. Note that both in our experiments and the experiments from [14], se�ing
up a lot of topics or a lot of partitions (a few hundred) led to frequent crashes of the control plane
logic.
Figure 7 shows the throughput of Ka�a as a function of partition counts. Its slope tapers o� at

about 10 (not due to core utilization, presumably by disk cache / driver logic resource contention)
and the curve peaks at 200 in our experimental setup. �is peak will occur elsewhere on systems
with di�erent core / DRAM / performance specs, so evidently, determining the partition count will
be one of the most important con�guration jobs of a Ka�a installation.
In [34], Wyngaard reports on an experiment at NASA JPL for very high record sizes (10MB).

A maximum of 6.49Gbps for throughput measured in bytes was found on a con�guration with 3
producers, 3 consumers, single Ka�a instance. More producers or more Ka�a instances reduced
this performance.
�e observation that increasing the number of partitions beyond a certain point does not help

to increase total throughput anymore could be due to the fact that the batchsize de�ned at the
producer is split over the number of partitions.

5.2.2 Throughput in At Least Once Mode. For RabbitMQ, at least once mode implies writing
packets to disk. �e read will still happen from memory, as long as the packet in memory has not
been trashed.
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Using producer batches is supported by AMQP, and RabbitMQ allows individual ACK/NACK
responses per message in the batch. Together with the insertion sort on the queues, this ensures a
producer can pipeline several batches without the need to wait for ACKS and still be sure about
message order in the queues.
Switching on mirrored queues will have a negative impact on this throughput since the ACK

now needs to be guaranteed from all the replicated queues.
Referring to Figure 4a above, for at least once delivery scenarios, RabbitMQ’s throughput drops

by 50% compared to the best e�ort scenario.
�e case of Ka�a is more complicated to analyze. Ka�a assumes packets are wri�en in

batches, and will always write them to disk. In its at most once mode, Ka�a can de�ne a win-
dow (either in terms of number of packets or in terms of time, ”log.�ush.interval.messages” and
”log.�ush.interval.ms”) of outstanding messages that have not yet been fsynced to disk media. �is
implies that on a system crash these messages will be lost.
�e only way to get truly reliable message delivery with Ka�a is running it in a mode where

acknowledges are sent only if a batch has been wri�en to the disk medium, or has been received
by a quorum of replicas. �is e�ectively slows down the producer to wait for a con�rmation of a
batch before the next batch can be wri�en, introducing a round trip delay which is not required in
RabbitMQ due to its selective ACK/NACK mechanism and reordering logic. If Ka�a is running
with redundant nodes, the client has to wait for a quorum ACK which will even take longer (2
round trips instead of 1). Our experiments show a decrease in performance due to replication of
about 3 to 4 for topics = 5,batchsize = 100,partitions = 5, replication = 2. A similar experiment,
reported in [23], generated slightly be�er results. Lastly, results from [22] indicate that the impact
of replication factor is visible only when acknowledgments from all replicas are taken into account.
For a 2 replica system, performance drops to half for larger batches, to a third for single messages.



|producers |
Uroutinд+size∗Ubyte

(a)
Uroutinд Ubyte Mean Error

no replication 3.24e − 5 7.64e − 9 3%
replicated queue 6.52e − 5 8.13e − 9 4.5%

(b)
Table 3. Modeling the throughput of RabbitMQ: (a) suggested function (b) fi�ed values

|producers |∗ |par tit ions |
Uroutinд+ |topics |∗Utopics+ef f ect ive size0.5∗Ubyte

(a)
Uroutinд Utopics Ubyte Mean Error

acks = 0, rep. = 0 3.8e − 4 2.1e − 7 4.9e − 6 30%
acks = 1, rep. = 0 3.9e − 4 9.1e − 8 1.1e − 6 30%
acks = -1, rep. = 2 9.4e − 4 7.3e − 5 2.9e − 5 45%

(b)
Table 4. Modeling the throughput of Kafka: (a) suggested function (b) fi�ed values

We conclude that Ka�a’s throughput in at least once mode decreases by 50% to 75% compared
to the best e�ort scenario.

Analysis and Summary. �ere are various factors contributing to the overall throughput of
RabbitMQ and Ka�a. In order to simplify the analysis and summarize the results reported in
this section, we use a curve-��ing approach: for each system we propose a simple �rst order
function to model its throughput characteristics based on its inputs as well as important archi-
tecture/implementation details. Furthermore, in each case we apply a minimum error procedure
between the proposed function and our empirical data.
�e resulting functions and ��ed values for RabbitMQ and Ka�a are depicted in Table 3 and

Table 4, respectively. Note that in this tables, U stands for “(processor cycle) utilization” and
e�ective size (in case of Ka�a) is the maximum of the batch size and the record size used by the
producers.

�e proposed function to model the throughput behavior of RabbitMQ is shown in Table 3. Due
to the Actor Model of Erlang, the total throughput per RabbitMQ node scales linearly with the
number of producers, hence the producer factor in the formula. �e producers factor, however, is
only linear up to a value governed by how Erlang distributes its lightweight processes over cores,
in our measurements the pps already saturated at the value corresponding to producers == 2 for a
single node and single queue.
Part (b) of Table 3 shows the ��ed values of the proposed function for the graph in Figure 4a.

�e mean error is signi�cantly low. Another �t on the measurements published in [25] gives very
similar results.

�ere are a few important remarks here: (i) there is a small in�uence on the outstanding published
packets parameter. If we change this from 10 to 100, for 100 bytes packets the throughput increases
to 20Kpps, (ii) all these results are for a direct exchange. A topic exchange has more complex
routing logic (for 100 byte packets, the throughput lowers to 19Kpps).
In summary, we can conclude that RabbitMQ is mainly constrained by routing complexity (up

till frame sizes of a few 1000 bytes, at which time packet copying becomes non-negligible), which
is the reason why we prefer to express RabbitMQ performance in packets per unit of time.



�e proposed function to model the throughput behavior of Ka�a is shown in Table 4. �e
“topics” parameter counts the number of con�gured topics on the Ka�a broker. It is worth noting
that for Ka�a, we get the best �t if we put a 0.5 exponent, which might be related to the power law
of cache misses.
For producers = 5, size = 4000,partitions = 10 our estimation predicts 85 Kpps. On a slightly

more powerful processor architecture (faster memory, twice the cache size), [16] reports 140 Kpps
for a similar test con�guration.

From these parameters, it becomes evident that it is more appropriate to express Ka�a throughput
in bytes, sinceUbyte is dominant even for small frames.
Finally, the error rate level in case of Ka�a is not as low as that of RabbitMQ. Two potential

causes for these variations are: (i) Ka�a relies on OS level caching of disk access, which is a
complex hidden subsystem that cannot be accurately modeled or even controlled and is shared
across everything that runs on the machine (ii) Ka�a runs on the JVM, which has much more
variability [26] than an Erlang VM due to unsophisticated locking mechanisms and the garbage
collection process.

6 DISTINCT FEATURES
In the previous sections, we looked at the common features that Ka�a and RabbitMQ share.
However, these two systems also come with their own distinct features. Knowledge of such features
might be an important factor while making the decision to choose one of the two. Hence, below,
we give a short summary of such features.

6.1 Features Unique to Kafka
6.1.1 Long Term Message Storage. Ka�a stores its messages on disk. Purging of messages is

done automatically and con�gured per topic. Messages are purged either a�er a retention time or
when the topic’s disk quota has been exceeded.

6.1.2 Message Replay. Since Ka�a keeps no state about consumers and messages can be stored
long term, consumers can easily replay messages when needed. �is can be a very useful feature
for the fault tolerance of the downstream systems.

6.1.3 Kafka Connect. Ka�a Connect is a framework for scalable and reliable streaming of data
between Apache Ka�a and other systems. It makes it simple to quickly de�ne connectors that
move large collections of data into and out of Ka�a.

6.1.4 Log Compaction. Ka�a’s log compaction feature ensures that it will always retain at least
the last known value for each message key within the log of data for a single topic partition. �is
can be particularly useful in the use cases that are based on change feeds (de�ned in Section 7).
�e Ka�a ecosystem o�ers libraries and tools that provide additional functionality on top of

Ka�a as pub/sub system. A notable example is Kafka Streams which is brie�y explained in
Section 7.1.5. A detailed description of these capabilities is beyond the scope of this paper.

6.2 Features Unique to RabbitMQ
6.2.1 Standardized Protocol. RabbitMQ is, in essence, an open-source implementation of AMQP,

a standard protocol with a highly-scrutinized design. As such, it enjoys a higher level of interoper-
ability and can easily work with (and even be replaced by) other AMQP-compliant implementations.

6.2.2 Multi-protocol. In addition to AMQP, RabbitMQ supports a few other industry standard
protocols for publishing and consuming messages, most notably MQTT (a very popular choice in



the IoT community) and STOMP. Hence, in se�ings with mixed use of protocols, RabbitMQ can be
a valuable asset.

6.2.3 Distributed Topology Modes. RabbitMQ, in addition to clustering, also supports federated
exchanges which is a goodmatch forWide-area deployment with less-reliable network connections6.
Compared to Clustering, it has a lower degree of coupling. A very useful feature of the federated
exchanges is their on-demand forwarding. Furthermore, through its Shovel mechanism, RabbitMQ
provides another convenient and easy way to chain brokers/clusters together.

6.2.4 Comprehensive Management and Monitoring Tools. RabbitMQ ships with an easy-to-use
management UI that allows user to monitor and control every aspect of the message broker,
including: (i) connections, (ii) queues, (iii) exchanges, (iv) clustering, federation and shoveling, (v)
packet tracing, (vi) resource consumption. Together, these o�er excellent visibility on internal
metrics and allow for easy test and debug cycles.

6.2.5 Multi-tenancy and Isolation. RabbitMQ implements the notation of Virtual Hosts which is
de�ned by AMQP to make it possible for a single broker to host multiple isolated environments
(i.e. logical groups of entities such as connections, exchanges, queues, bindings, user permissions,
policies, etc).

6.2.6 Consumer Tracking. At queue level, it keeps state, and knows exactly what consumers
have consumed what messages at any time.

6.2.7 Disk-less Use. RabbitMQ does not require disk space to route packets, if persistence is not
a requirement. �is makes it a good choice for embedded applications and restricted environments.
In fact, RabbitMQ has been successfully deployed on Raspberry Pi [6].

6.2.8 Publisher Flow Control. RabbitMQ can stop publishers from overwhelming the broker in
extreme situations. �is can be used in a �ow control scenario when deletion of messages is not
acceptable.

6.2.9 �eue Size Limits. A queue can be limited in size. �is mechanism can help in a �ow
control scenario when deletion of messages is acceptable.

6.2.10 Message TTL. A message can be given a “Time To Live”. If it stays beyond that time in
any queue, it will not be delivered to the consumer. �is makes a lot of sense for realtime data that
becomes irrelevant a�er a speci�c time. �e TTL can be a�ached to a queue at creation time, or to
individual messages at the time of publishing.

7 PREFERRED USE CASES
7.1 Best Suited for Kafka

7.1.1 Pub/Sub Messaging. Ka�a can be a good match for the pub/sub use cases that exhibit the
following properties: (i) if the routing logic is simple, so that a Ka�a “topic” concept can handle the
requirements, (ii) if throughput per topic is beyond what RabbitMQ can handle (e.g. event �rehose).

7.1.2 Scalable Ingestion System. Many of the leading Big Data processing platforms enable high
throughput processing of data once it has been loaded into the system. However, in many cases,
loading of the data into such platforms is the main bo�leneck. Ka�a o�ers a scalable solution for
such scenarios and it has already been integrated into many of such platforms including Apache
Spark and Apache Flink, to name a few.
6Recent versions of Ka�a have a notion of federation, but more in the sense of cross-datacenter replication.



7.1.3 Data-Layer Infrastructure. Due to its durability and e�cient multicast, Ka�a can serve
as an underlying data infrastructure that connects various batch and streaming services and
applications within an enterprise.

7.1.4 Capturing Change Feeds. Change feeds are sequences of update events that capture all the
changes applied on an initial state (e.g. a table in database, or a particular row within that table).
Traditionally, change feeds have been used internally by DBMSs to synchronize replicas. More
recently, however, some of the modern data stores have exposed their change feeds externally,
so they can be used to synchronize state in distributed environments. Ka�a’s log-centric design,
makes it an excellent backend for an application built in this style.

7.1.5 Stream Processing. Starting in Ka�a version 0.10.0.0, a light-weight stream processing
library called Ka�a Streams is available in Apache Ka�a to perform stateful and fault-tolerant data
processing. Furthermore, Apache Samza, an open-source stream processing platform is based on
Ka�a.

7.2 Best Suited for RabbitMQ
7.2.1 Pub/Sub Messaging. Since this is exactly why RabbitMQ was created, it will satisfy most

of the requirements. �is is even more so in an edge/core message routing scenario where brokers
are running in a particular interconnect topology.

7.2.2 Request-Response Messaging. RabbitMQ o�ers a lot of support for RPC style communica-
tion by means of the correlation ID and direct reply-to feature, which allows RPC clients to receive
replies directly from their RPC server, without going through a dedicated reply queue that needs to
be set up.

Hence, RabbitMQ, having speci�c support to facilitate this usecase and stronger ordering guar-
antees, would be the preferred choice.

7.2.3 Operational Metrics Tracking. RabbitMQ would be a good choice for realtime processing,
based on the complex �ltering the broker could provide.
Although Ka�a would be a good choice as an interface to apply o�ine analytics, given that it

can store messages for a long time and allows replay of messages. �roughput per topic could be
another criterion to decide.

7.2.4 Underlying Layer for IoT Applications Platform. RabbitMQ can be used to connect individual
operator nodes in a data�ow graph, regardless of where the operators are instantiated. A lot of the
features of RabbitMQ directly cover platform requirements: (i) sub 5ms latency for the majority of
the packets, throughput up to 40Kpps for single nodes, (ii) excellent visibility on internal metrics
and easy test and debug cycles for data�ow setup through the web management interface, (iii)
support for the MQTT protocol, (iv) sophisticated routing capability allows to expose packet �lters
as part of an associated data processing language, and (v) the possibility to handle a very large
number of streams that all have rather small throughput requirements, with a large number of
applications all interested in di�erent small subsets of these streams.

7.2.5 Information-centric Networking. �is is essentially a game on the capabilities of the archi-
tecture to intelligently route packets. �erefore, RabbitMQ would be the preferred choice, maybe
even with a speci�c exchange that understands the link between routing key and destination. �e
geographic routing described in [12] is an example.



7.3 Combined Use
�ere are a number of requirements that cannot be covered solely by either RabbitMQ or Ka�a,
and where a combination of both is the best option.

Two common options for chaining these two systems are the following:

• Option 1: RabbitMQ, followed by Ka�a. �is is a good choice if RabbitMQ would be the
best architectural choice, but some streams need long term storage. By pu�ing RabbitMQ
�rst, stronger latency guarantees can be o�ered. It also allows �ne-grained selection of
what streams need to go to long term storage, preserving disk resources.
• Option 2: Ka�a, followed by RabbitMQ. �is is a good choice if the throughput for the
whole system is very high, but the throughput per topic is within the bounds of what a
single node RabbitMQ broker can handle. By pu�ing a RabbitMQ node behind a Ka�a
topic stream, all the complex routing capabilities of RabbitMQ can be combined with the
complementary features of Ka�a.

�e AMQP-Ka�a Bridge [27] can facilitate the interactions between RabbitMQ and Ka�a.
Alternatively, RabbitMQ and Ka�a can just be put in parallel, both processing the same input

streams. �is is more likely to happen in a scenario where two existing architectures are merged,
and one was using Ka�a while the other was using RabbitMQ.

Determination Table. So far we have considered speci�c use cases whose requirements are best
satis�ed by Ka�a, RabbitMQ or a combination of both. In order to make these recommendations
applicable to other use cases, we propose a determination table (depicted in Table 5). Each row in
the table shows a set of features, and the architectural choice that corresponds to this set. �is table
obviously oversimpli�es the decision to take - architects are advised to consider all dimensions of
the problem as discussed in Sections 4, 5 and 6 before coming to a conclusion.

8 CONCLUSION
Ka�a and RabbitMQ are two popular implementations of the pub/sub interaction paradigm. Despite
commonalities, however, these two systems have di�erent histories and design goals, and distinct
features. RabbitMQ is an e�cient implementation of the AMQP protocol, that o�er �exible routing
mechanism, using the exchanges/binding notions. It is much closer to the classic messaging systems.
For example, it takes care of most of the consumption bookkeeping, its main design goal is to handle
messages in memory, and its queue logic is optimized for empty-or-nearly-empty queues. Ka�a,
on the other hand, is designed around a distributed commit log, aiming at high-throughput and
consumers of varying speeds. To that end, it has departed from the classic principles of messaging
systems in a few ways: extensive use of partitioning at the expense of data order, its queues are
logical views on persisted logs, allowing replayability, but manual retention policies. Furthermore,
it also applies a number of very e�ective optimization techniques, most notably, aggressive batching
and reliance on persistent data structures and OS page cache.

In this paper, we established a comparison framework to help position Apache Ka�a and RabbitMQ
w.r.t. each other, both quantitatively and qualitatively.

In terms of latency, both systems are capable of delivering low-latency results (i.e., mean/median
of around 10 ms). In case of RabbitMQ, the di�erence between at most once and at least once
delivery modes is not signi�cant. For Ka�a, on the other hand, latency increases about twice as
large for the at least once mode. Additionally, if it needs to read from disk, its latency can grow by
up to an order of magnitude.
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N N * * N N XL N N Ka�a with multiple partitions
N N * * N N XL Y Y Ka�a with replication and multiple partitions
N N * * Y N L N N single partition Ka�a
N N * * Y N L Y Y single partition Ka�a with replication
* * N N * * L * N RabbitMQ
* * N N * * L * Y RabbitMQ with queue replication
* * Y N * * L * * RabbitMQ with Ka�a long term storage
N Y * * N N XL N * Ka�a with selected RabbitMQ routing

1 Y - feature required, N - feature not required, * - wildcard, replaces two rows that are
identical but in this feature, one with Y and one with N
2 L(arge), (e)X(tra)L(arge), see 5.2 for some more quantitative throughput �gures

Table 5. RabbitMQ and/or Kafka?

In terms of throughput, in the most basic set up (i.e. on a single node, single producer/channel,
single partition, no replication) RabbitMQ’s throughput outperforms Ka�a’s. Increasing the
Ka�a partition count on the same node, however, can signi�cantly improve its performance,
demonstrating its superb scalability. Increasing the producer/channel count in RabbitMQ, on the
other hand, could only improve its performance moderately.
Both Ka�a and RabbitMQ can scale further by partitioning �ows over multiple nodes. In Rab-

bitMQ, this requires additional special logic, such as Consistent Hash Exchange [3] and Sharding
Exchange [28]. In Ka�a this comes for free. Finally, replication has a drastic impact on the perfor-
mance of both RabbitMQ and Ka�a and reduces their performance by 50% and 75%, respectively.

While e�ciency aspects are very important, architects are strongly advised to consider all other
dimensions of the problem as discussed in Sections 4 (qualitative comparison of common features
beyond performance) and 6 (distinct features) before coming to a conclusion. �e study reported
in [26] which was conducted in the context of a real-world application can serve as a good example.
Further, as described in section 7, such choice does not have to be an exclusive one and a

combination of both systems might be the best option.
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