Outline

1. Least Squares Data Fitting
2. Existence, Uniqueness, and Conditioning
3. Solving Linear Least Squares Problems
Method of Least Squares

- Measurement errors are inevitable in observational and experimental sciences.
- Errors can be smoothed out by averaging over many cases, i.e., taking more measurements than are strictly necessary to determine parameters of system.
- Resulting system is *overdetermined*, so usually there is no exact solution.
- In effect, higher dimensional data are projected into lower dimensional space to suppress irrelevant detail.
- Such projection is most conveniently accomplished by method of *least squares*.
Linear Least Squares

For linear problems, we obtain \textit{overdetermined} linear system \(Ax = b \), with \(m \times n \) matrix \(A \), \(m > n \).

System is better written \(Ax \approx b \), since equality is usually not exactly satisfiable when \(m > n \).

Least squares solution \(x \) minimizes squared Euclidean norm of residual vector \(r = b - Ax \),

\[
\min_x \|r\|_2^2 = \min_x \|b - Ax\|_2^2
\]
Given \(m \) data points \((t_i, y_i)\), find \(n \)-vector \(x \) of parameters that gives “best fit” to model function \(f(t, x) \),

\[
\min_x \sum_{i=1}^{m} (y_i - f(t_i, x))^2
\]

Problem is \textit{linear} if function \(f \) is linear in components of \(x \),

\[
f(t, x) = x_1 \phi_1(t) + x_2 \phi_2(t) + \cdots + x_n \phi_n(t)
\]

where functions \(\phi_j \) depend only on \(t \)

Problem can be written in matrix form as \(Ax \approx b \), with \(a_{ij} = \phi_j(t_i) \) and \(b_i = y_i \)
Polynomial fitting

\[f(t, \mathbf{x}) = x_1 + x_2 t + x_3 t^2 + \cdots + x_n t^{n-1} \]

is linear, since polynomial linear in coefficients, though nonlinear in independent variable \(t \)

Fitting sum of exponentials

\[f(t, \mathbf{x}) = x_1 e^{x_2 t} + \cdots + x_{n-1} e^{x_n t} \]

is example of nonlinear problem

For now, we will consider only linear least squares problems
Example: Data Fitting

- Fitting quadratic polynomial to five data points gives linear least squares problem

\[
A \mathbf{x} = \begin{bmatrix}
1 & t_1 & t_1^2 \\
1 & t_2 & t_2^2 \\
1 & t_3 & t_3^2 \\
1 & t_4 & t_4^2 \\
1 & t_5 & t_5^2 \\
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
\end{bmatrix} = \mathbf{b}
\]

- Matrix whose columns (or rows) are successive powers of independent variable is called **Vandermonde matrix**
Example, continued

- For data

 \[
 \begin{array}{c|cccccc}
 t & -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
 y & 1.0 & 0.5 & 0.0 & 0.5 & 2.0 \\
 \end{array}
 \]

 overdetermined 5×3 linear system is

 \[
 Ax = \begin{bmatrix}
 1 & -1.0 & 1.0 \\
 1 & -0.5 & 0.25 \\
 1 & 0.0 & 0.0 \\
 1 & 0.5 & 0.25 \\
 1 & 1.0 & 1.0
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
 \end{bmatrix}
 \approx
 \begin{bmatrix}
 1.0 \\
 0.5 \\
 0.0 \\
 0.5 \\
 2.0
 \end{bmatrix}
 = b
 \]

- Solution, which we will see later how to compute, is

 \[
 x = \begin{bmatrix}
 0.086 & 0.40 & 1.4
 \end{bmatrix}^T
 \]

 so approximating polynomial is

 \[
 p(t) = 0.086 + 0.4t + 1.4t^2
 \]
Example, continued

- Resulting curve and original data points are shown in graph
Existence and Uniqueness

- Linear least squares problem $Ax \approx b$ always has solution.

- Solution is unique if, and only if, columns of A are linearly independent, i.e., $\text{rank}(A) = n$, where A is $m \times n$.

- If $\text{rank}(A) < n$, then A is rank-deficient, and solution of linear least squares problem is not unique.

- For now, we assume A has full column rank n.
Normal Equations

To minimize squared Euclidean norm of residual vector

\[\| r \|^2 = r^T r = (b - Ax)^T (b - Ax) \]
\[= b^T b - 2x^T A^T b + x^T A^T Ax \]

take derivative with respect to \(x \) and set it to 0,

\[2A^T Ax - 2A^T b = 0 \]

which reduces to \(n \times n \) linear system of normal equations

\[A^T Ax = A^T b \]
Orthogonality

- Vectors v_1 and v_2 are orthogonal if their inner product is zero, $v_1^T v_2 = 0$.

- Space spanned by columns of $m \times n$ matrix A, $\text{span}(A) = \{Ax : x \in \mathbb{R}^n\}$, is of dimension at most n.

- If $m > n$, b generally does not lie in $\text{span}(A)$, so there is no exact solution to $Ax = b$.

- Vector $y = Ax$ in $\text{span}(A)$ closest to b in 2-norm occurs when residual $r = b - Ax$ is orthogonal to $\text{span}(A)$,

$$0 = A^T r = A^T (b - Ax)$$

again giving system of normal equations

$$A^T Ax = A^T b$$
Geometric relationships among b, r, and $\text{span}(A)$ are shown in diagram.
Orthogonal Projectors

- Matrix P is **orthogonal projector** if it is *idempotent* ($P^2 = P$) and *symmetric* ($P^T = P$)

- Orthogonal projector onto orthogonal complement $\text{span}(P)^\perp$ is given by $P_\perp = I - P$

- For any vector v,

 $$v = (P + (I - P))v = Pv + P_\perp v$$

- For least squares problem $Ax \approx b$, if $\text{rank}(A) = n$, then

 $$P = A(A^T A)^{-1} A^T$$

 is orthogonal projector onto $\text{span}(A)$, and

 $$b = Pb + P_\perp b = Ax + (b - Ax) = y + r$$
Pseudoinverse and Condition Number

- Nonsquare $m \times n$ matrix A has no inverse in usual sense
- If $\text{rank}(A) = n$, pseudoinverse is defined by
 \[
 A^+ = (A^T A)^{-1} A^T
 \]
 and condition number by
 \[
 \text{cond}(A) = \|A\|_2 \cdot \|A^+\|_2
 \]
- By convention, $\text{cond}(A) = \infty$ if $\text{rank}(A) < n$
- Just as condition number of square matrix measures closeness to singularity, condition number of rectangular matrix measures closeness to rank deficiency
- Least squares solution of $Ax \cong b$ is given by $x = A^+ b$
Sensitivity of least squares solution to $Ax \approx b$ depends on b as well as A.

Define angle θ between b and $y = Ax$ by

$$\cos(\theta) = \frac{\|y\|_2}{\|b\|_2} = \frac{\|Ax\|_2}{\|b\|_2}$$

Bound on perturbation Δx in solution x due to perturbation Δb in b is given by

$$\frac{\|\Delta x\|_2}{\|x\|_2} \leq \text{cond}(A) \frac{1}{\cos(\theta)} \frac{\|\Delta b\|_2}{\|b\|_2}$$
Similarly, for perturbation E in matrix A,

$$\frac{\|\Delta x\|_2^2}{\|x\|_2^2} \lesssim (\text{cond}(A)^2 \tan(\theta) + \text{cond}(A)) \frac{\|E\|_2^2}{\|A\|_2^2}$$

Condition number of least squares solution is about $\text{cond}(A)$ if residual is small, but can be squared or arbitrarily worse for large residual.
If \(m \times n \) matrix \(A \) has rank \(n \), then symmetric \(n \times n \) matrix \(A^T A \) is positive definite, so its Cholesky factorization

\[
A^T A = LL^T
\]

can be used to obtain solution \(x \) to system of normal equations

\[
A^T A x = A^T b
\]

which has same solution as linear least squares problem \(Ax \approx b \)

Normal equations method involves transformations

rectangular \(\rightarrow \) square \(\rightarrow \) triangular
Example: Normal Equations Method

For polynomial data-fitting example given previously, normal equations method gives

\[A^T A = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
-1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
1.0 & 0.25 & 0.0 & 0.25 & 1.0 \\
\end{bmatrix}
\begin{bmatrix}
1 & -1.0 & 1.0 \\
1 & -0.5 & 0.25 \\
1 & 0.0 & 0.0 \\
1 & 0.5 & 0.25 \\
1 & 1.0 & 1.0 \\
\end{bmatrix} = \begin{bmatrix}
5.0 & 0.0 & 2.5 \\
0.0 & 2.5 & 0.0 \\
2.5 & 0.0 & 2.125 \\
\end{bmatrix}, \]

\[A^T b = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
-1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
1.0 & 0.25 & 0.0 & 0.25 & 1.0 \\
\end{bmatrix}
\begin{bmatrix}
1.0 \\
0.5 \\
0.0 \\
0.5 \\
2.0 \\
\end{bmatrix} = \begin{bmatrix}
4.0 \\
1.0 \\
3.25 \\
\end{bmatrix} \]
Example, continued

- Cholesky factorization of symmetric positive definite matrix $A^T A$ gives

\[
A^T A = \begin{bmatrix}
5.0 & 0.0 & 2.5 \\
0.0 & 2.5 & 0.0 \\
2.5 & 0.0 & 2.125
\end{bmatrix}
\]

\[
= \begin{bmatrix}
2.236 & 0 & 0 \\
0 & 1.581 & 0 \\
1.118 & 0 & 0.935
\end{bmatrix} \begin{bmatrix}
2.236 & 0 & 1.118 \\
0 & 1.581 & 0 \\
0 & 0 & 0.935
\end{bmatrix} = LL^T
\]

- Solving lower triangular system $Lz = A^T b$ by forward-substitution gives $z = [1.789, 0.632, 1.336]^T$

- Solving upper triangular system $L^T x = z$ by back-substitution gives $x = [0.086, 0.400, 1.429]^T$
Shortcomings of Normal Equations

- Information can be lost in forming $A^T A$ and $A^T b$
- For example, take
 \[
 A = \begin{bmatrix}
 1 & 1 \\
 \epsilon & 0 \\
 0 & \epsilon
 \end{bmatrix}
 \]
 where ϵ is a positive number smaller than $\sqrt{\epsilon_{\text{mach}}}$
- Then in floating-point arithmetic
 \[
 A^T A = \begin{bmatrix}
 1 + \epsilon^2 & 1 \\
 1 & 1 + \epsilon^2
 \end{bmatrix} = \begin{bmatrix}
 1 & 1 \\
 1 & 1
 \end{bmatrix}
 \]
 which is singular
- Sensitivity of solution is also worsened, since
 \[
 \text{cond}(A^T A) = [\text{cond}(A)]^2
 \]
Definition of residual together with orthogonality requirement give \((m + n) \times (m + n)\) augmented system

\[
\begin{bmatrix}
I & A \\
A^T & O
\end{bmatrix}
\begin{bmatrix}
r \\
x
\end{bmatrix}
=
\begin{bmatrix}
b \\
0
\end{bmatrix}
\]

Augmented system is not positive definite, is larger than original system, and requires storing two copies of \(A\)

But it allows greater freedom in choosing pivots in computing \(LDL^T\) or \(LU\) factorization
Augmented System Method, continued

- Introducing scaling parameter α gives system

$$\begin{bmatrix} \alpha I & A \\ A^T & O \end{bmatrix} \begin{bmatrix} r/\alpha \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

which allows control over relative weights of two subsystems in choosing pivots.

- Reasonable rule of thumb is to take

$$\alpha = \max_{i,j} |a_{ij}|/1000$$

- Augmented system is sometimes useful, but is far from ideal in work and storage required.
Orthogonal Transformations

- We seek alternative method that avoids numerical difficulties of normal equations.
- We need numerically robust transformation that produces easier problem without changing solution.
- What kind of transformation leaves least squares solution unchanged?
- Square matrix Q is *orthogonal* if $Q^T Q = I$.
- Multiplication of vector by orthogonal matrix preserves Euclidean norm:
 $$\|Qv\|_2^2 = (Qv)^T Qv = v^T Q^T Qv = v^T v = \|v\|_2^2$$
- Thus, multiplying both sides of least squares problem by orthogonal matrix does not change its solution.
As with square linear systems, suitable target in simplifying least squares problems is triangular form.

Upper triangular overdetermined \((m > n)\) least squares problem has form

\[
\begin{bmatrix}
R \\
O
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\]

where \(R\) is \(n \times n\) upper triangular and \(b\) is partitioned similarly.

Residual is

\[
\|r\|_2^2 = \|b_1 - Rx\|_2^2 + \|b_2\|_2^2
\]
Triangular Least Squares Problems, continued

- We have no control over second term, $\|b_2\|_2^2$, but first term becomes zero if x satisfies $n \times n$ triangular system

$$Rx = b_1$$

which can be solved by back-substitution

- Resulting x is least squares solution, and minimum sum of squares is

$$\|r\|_2^2 = \|b_2\|_2^2$$

- So our strategy is to transform general least squares problem to triangular form using orthogonal transformation so that least squares solution is preserved
QR Factorization

- Given $m \times n$ matrix A, with $m > n$, we seek $m \times m$ orthogonal matrix Q such that

\[
A = Q \begin{bmatrix} R \\ O \end{bmatrix}
\]

where R is $n \times n$ and upper triangular

- Linear least squares problem $Ax \approx b$ is then transformed into triangular least squares problem

\[
Q^T A x = \begin{bmatrix} R \\ O \end{bmatrix} x \approx \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Q^T b
\]

which has same solution, since

\[
\| r \|_2^2 = \| b - Ax \|_2^2 = \| b - Q \begin{bmatrix} R \\ O \end{bmatrix} x \|_2^2 = \| Q^T b - \begin{bmatrix} R \\ O \end{bmatrix} x \|_2^2
\]
If we partition $m \times m$ orthogonal matrix $Q = [Q_1 \ Q_2]$, where Q_1 is $m \times n$, then

$$ A = Q \begin{bmatrix} R \\ O \end{bmatrix} = [Q_1 \ Q_2] \begin{bmatrix} R \\ O \end{bmatrix} = Q_1 R $$

is called reduced QR factorization of A.

Columns of Q_1 are orthonormal basis for $\text{span}(A)$, and columns of Q_2 are orthonormal basis for $\text{span}(A)^\perp$.

$Q_1Q_1^T$ is orthogonal projector onto $\text{span}(A)$.

Solution to least squares problem $Ax \bowtie b$ is given by solution to square system

$$ Q_1^T Ax = Rx = c_1 = Q_1^T b $$
Computing QR Factorization

To compute QR factorization of \(m \times n \) matrix \(A \), with \(m > n \), we annihilate subdiagonal entries of successive columns of \(A \), eventually reaching upper triangular form.

Similar to LU factorization by Gaussian elimination, but use orthogonal transformations instead of elementary elimination matrices.

Possible methods include:

- Householder transformations
- Givens rotations
- Gram-Schmidt orthogonalization
Householder Transformations

- **Householder transformation** has form
 \[H = I - 2\frac{vv^T}{v^Tv} \]
 for nonzero vector \(v \)
- \(H \) is orthogonal and symmetric: \(H = H^T = H^{-1} \)
- Given vector \(a \), we want to choose \(v \) so that
 \[
 H a = \begin{bmatrix}
 \alpha \\
 0 \\
 \vdots \\
 0
 \end{bmatrix} = \alpha \begin{bmatrix}
 1 \\
 0 \\
 \vdots \\
 0
 \end{bmatrix} = \alpha e_1
 \]
- Substituting into formula for \(H \), we can take
 \[v = a - \alpha e_1 \]
 and \(\alpha = \pm \|a\|_2 \), with sign chosen to avoid cancellation
Example: Householder Transformation

- If \(\mathbf{a} = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T \), then we take

\[
\mathbf{v} = \mathbf{a} - \alpha \mathbf{e}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}
\]

where \(\alpha = \pm \| \mathbf{a} \|_2 = \pm 3 \)

- Since \(a_1 \) is positive, we choose negative sign for \(\alpha \) to avoid cancellation, so \(\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix} \)

- To confirm that transformation works,

\[
H \mathbf{a} = \mathbf{a} - 2 \frac{\mathbf{v}^T \mathbf{a}}{\mathbf{v}^T \mathbf{v}} \mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - 2 \frac{15}{30} \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}
\]
Householder QR Factorization

- To compute QR factorization of A, use Householder transformations to annihilate subdiagonal entries of each successive column.

- Each Householder transformation is applied to entire matrix, but does not affect prior columns, so zeros are preserved.

- In applying Householder transformation H to arbitrary vector u,

\[Hu = \left(I - 2 \frac{vv^T}{v^Tv} \right) u = u - \left(2 \frac{v^Tu}{v^Tv} \right) v \]

which is much cheaper than general matrix-vector multiplication and requires only vector v, not full matrix H.
Householder QR Factorization, continued

- Process just described produces factorization

\[H_n \cdots H_1 A = \begin{bmatrix} R \\ O \end{bmatrix} \]

where \(R \) is \(n \times n \) and upper triangular

- If \(Q = H_1 \cdots H_n \), then \(A = Q \begin{bmatrix} R \\ O \end{bmatrix} \)

- To preserve solution of linear least squares problem, right-hand side \(b \) is transformed by same sequence of Householder transformations

- Then solve triangular least squares problem \(\begin{bmatrix} R \\ O \end{bmatrix} x \approx Q^T b \)
For solving linear least squares problem, product Q of Householder transformations need not be formed explicitly.

R can be stored in upper triangle of array initially containing A.

Householder vectors v can be stored in (now zero) lower triangular portion of A (almost).

Householder transformations most easily applied in this form anyway.
Example: Householder QR Factorization

For polynomial data-fitting example given previously, with

\[
A = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}, \quad b = \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix}
\]

Householder vector \(v_1 \) for annihilating subdiagonal entries of first column of \(A \) is

\[
v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -2.236 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3.236 \\ 1 \\ 1 \end{bmatrix}
\]
Example, continued

- Applying resulting Householder transformation H_1 yields transformed matrix and right-hand side

$$H_1 A = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & -0.191 & -0.405 \\ 0 & 0.309 & -0.655 \\ 0 & 0.809 & -0.405 \\ 0 & 1.309 & 0.345 \end{bmatrix}, \quad H_1 b = \begin{bmatrix} -1.789 \\ -0.362 \\ -0.862 \\ -0.362 \\ 1.138 \end{bmatrix}$$

- Householder vector v_2 for annihilating subdiagonal entries of second column of $H_1 A$ is

$$v_2 = \begin{bmatrix} 0 \\ -0.191 \\ 0.309 \\ 0.809 \\ 1.309 \end{bmatrix} - \begin{bmatrix} 0 \\ 1.581 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1.772 \\ 0.309 \\ 0.809 \\ 1.309 \end{bmatrix}$$
Example, continued

Applying resulting Householder transformation H_2 yields

$$H_2H_1A = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & -0.725 \\ 0 & 0 & -0.589 \\ 0 & 0 & 0.047 \end{bmatrix}, \quad H_2H_1b = \begin{bmatrix} -1.789 \\ 0.632 \\ -1.035 \\ -0.816 \\ 0.404 \end{bmatrix}$$

Householder vector v_3 for annihilating subdiagonal entries of third column of H_2H_1A is

$$v_3 = \begin{bmatrix} 0 \\ 0 \\ -0.725 \\ -0.589 \\ 0.047 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0.935 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1.660 \\ -0.589 \\ 0.047 \end{bmatrix}$$
Example, continued

Applying resulting Householder transformation H_3 yields

$$H_3H_2H_1A = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \\ 0 & 0 & 0 \end{bmatrix}, \quad H_3H_2H_1b = \begin{bmatrix} -1.789 \\ 0.632 \\ 1.336 \\ 0.026 \\ 0.337 \end{bmatrix}$$

Now solve upper triangular system $Rx = c_1$ by back-substitution to obtain $x = [0.086 \ 0.400 \ 1.429]^T$
Givens Rotations

- **Givens rotations** introduce zeros one at a time
- Given vector \([a_1 \quad a_2]^T\), choose scalars \(c\) and \(s\) so that

\[
\begin{bmatrix}
 c & s \\
 -s & c
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2
\end{bmatrix} = \begin{bmatrix}
 \alpha \\
 0
\end{bmatrix}
\]

with \(c^2 + s^2 = 1\), or equivalently, \(\alpha = \sqrt{a_1^2 + a_2^2}\)

- Previous equation can be rewritten

\[
\begin{bmatrix}
 a_1 & a_2 \\
 a_2 & -a_1
\end{bmatrix}
\begin{bmatrix}
 c \\
 s
\end{bmatrix} = \begin{bmatrix}
 \alpha \\
 0
\end{bmatrix}
\]

- Gaussian elimination yields triangular system

\[
\begin{bmatrix}
 a_1 & a_2 \\
 0 & -a_1 - a_2^2/a_1
\end{bmatrix}
\begin{bmatrix}
 c \\
 s
\end{bmatrix} = \begin{bmatrix}
 \alpha \\
 -\alpha a_2/a_1
\end{bmatrix}
\]
Back-substitution then gives

\[s = \frac{\alpha a_2}{a_1^2 + a_2^2} \quad \text{and} \quad c = \frac{\alpha a_1}{a_1^2 + a_2^2} \]

Finally, \(c^2 + s^2 = 1 \), or \(\alpha = \sqrt{a_1^2 + a_2^2} \), implies

\[c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} \quad \text{and} \quad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} \]
Example: Givens Rotation

Let \(a = \begin{bmatrix} 4 & 3 \end{bmatrix}^T \)

To annihilate second entry we compute cosine and sine

\[
c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} = \frac{4}{5} = 0.8 \quad \text{and} \quad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} = \frac{3}{5} = 0.6
\]

Rotation is then given by

\[
G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix}
\]

To confirm that rotation works,

\[
Ga = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}
\]
More generally, to annihilate selected component of vector in n dimensions, rotate target component with another component

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & c & 0 & s & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -s & 0 & c & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\alpha_5
\end{bmatrix}
=
\begin{bmatrix}
\alpha_1 \\
\alpha \\
\alpha_3 \\
0 \\
\alpha_5
\end{bmatrix}
$$

By systematically annihilating successive entries, we can reduce matrix to upper triangular form using sequence of Givens rotations

Each rotation is orthogonal, so their product is orthogonal, producing QR factorization
Givens QR Factorization

- Straightforward implementation of Givens method requires about 50% more work than Householder method, and also requires more storage, since each rotation requires two numbers, c and s, to define it.

- These disadvantages can be overcome, but requires more complicated implementation.

- Givens can be advantageous for computing QR factorization when many entries of matrix are already zero, since those annihilations can then be skipped.

< interactive example >
Given vectors a_1 and a_2, we seek orthonormal vectors q_1 and q_2 having same span. This can be accomplished by subtracting from second vector its projection onto first vector and normalizing both resulting vectors, as shown in diagram.

$$a_2 - (q_1^T a_2) q_1$$
Gram-Schmidt Orthogonalization

- Process can be extended to any number of vectors a_1, \ldots, a_k, orthogonalizing each successive vector against all preceding ones, giving the classical Gram-Schmidt procedure:

  ```
  \text{for } k = 1 \text{ to } n \\
  q_k = a_k \\
  \text{for } j = 1 \text{ to } k - 1 \\
  r_{jk} = q_j^T a_k \\
  q_k = q_k - r_{jk} q_j \\
  \text{end} \\
  r_{kk} = \|q_k\|_2 \\
  q_k = q_k / r_{kk} \\
  \text{end}
  ```

- Resulting q_k and r_{jk} form reduced QR factorization of A.
Modified Gram-Schmidt

- Classical Gram-Schmidt procedure often suffers loss of orthogonality in finite-precision

- Also, separate storage is required for A, Q, and R, since original a_k are needed in inner loop, so q_k cannot overwrite columns of A

- Both deficiencies are improved by *modified Gram-Schmidt* procedure, with each vector orthogonalized in turn against all subsequent vectors, so q_k can overwrite a_k
Modified Gram-Schmidt algorithm

\[
\text{for } k = 1 \text{ to } n \\
\quad r_{kk} = \|a_k\|_2 \\
\quad q_k = a_k / r_{kk} \\
\quad \text{for } j = k + 1 \text{ to } n \\
\quad \quad r_{kj} = q_k^T a_j \\
\quad \quad a_j = a_j - r_{kj} q_k \\
\text{end} \\
\text{end}
\]
If $\text{rank}(A) < n$, then QR factorization still exists, but yields singular upper triangular factor R, and multiple vectors x give minimum residual norm.

Common practice selects minimum residual solution x having smallest norm.

Can be computed by QR factorization with column pivoting or by singular value decomposition (SVD).

Rank of matrix is often not clear cut in practice, so relative tolerance is used to determine rank.
Example: Near Rank Deficiency

- Consider 3×2 matrix

$$A = \begin{bmatrix} 0.641 & 0.242 \\ 0.321 & 0.121 \\ 0.962 & 0.363 \end{bmatrix}$$

- Computing QR factorization,

$$R = \begin{bmatrix} 1.1997 & 0.4527 \\ 0 & 0.0002 \end{bmatrix}$$

- R is extremely close to singular (exactly singular to 3-digit accuracy of problem statement)

- If R is used to solve linear least squares problem, result is highly sensitive to perturbations in right-hand side

- For practical purposes, $\text{rank}(A) = 1$ rather than 2, because columns are nearly linearly dependent
QR with Column Pivoting

Instead of processing columns in natural order, select for reduction at each stage column of remaining unreduced submatrix having maximum Euclidean norm.

If \(\text{rank}(A) = k < n \), then after \(k \) steps, norms of remaining unreduced columns will be zero (or "negligible" in finite-precision arithmetic) below row \(k \).

Yields orthogonal factorization of form

\[
Q^T A P = \begin{bmatrix} R & S \\ O & O \end{bmatrix}
\]

where \(R \) is \(k \times k \), upper triangular, and nonsingular, and permutation matrix \(P \) performs column interchanges.
Basic solution to least squares problem \(Ax = b \) can now be computed by solving triangular system \(Rz = c_1 \), where \(c_1 \) contains first \(k \) components of \(QTb \), and then taking

\[
x = P \begin{bmatrix} z \\ 0 \end{bmatrix}
\]

Minimum-norm solution can be computed, if desired, at expense of additional processing to annihilate \(S \)

\(\text{rank}(A) \) is usually unknown, so rank is determined by monitoring norms of remaining unreduced columns and terminating factorization when maximum value falls below chosen tolerance

< interactive example >
Singular Value Decomposition

Singular value decomposition (SVD) of $m \times n$ matrix A has form

$$A = U \Sigma V^T$$

where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with

$$\sigma_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ \sigma_i & \text{for } i = j \end{cases}$$

Diagonal entries σ_i, called *singular values* of A, are usually ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$

Columns u_i of U and v_i of V are called left and right *singular vectors*
Example: SVD

SVD of \(A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{bmatrix} \) is given by \(U \Sigma V^T = \)

\[
\begin{bmatrix}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .0278 & .664 & -.509 \\
.750 & -.371 & -.542 & .0790
\end{bmatrix}
\begin{bmatrix}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
.504 & .574 & .644 \\
-.761 & -.057 & .646 \\
.408 & -.816 & .408
\end{bmatrix}
\]
Applications of SVD

- **Minimum norm solution** to $Ax \approx b$ is given by

$$x = \sum_{\sigma_i \neq 0} \frac{u_i^T b}{\sigma_i} v_i$$

For ill-conditioned or rank deficient problems, “small” singular values can be omitted from summation to stabilize solution.

- **Euclidean matrix norm**: $\|A\|_2 = \sigma_{\text{max}}$

- **Euclidean condition number of matrix**: \[\text{cond}(A) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}\]

- **Rank of matrix**: number of nonzero singular values
Pseudoinverse

- Define pseudoinverse of scalar σ to be $1/\sigma$ if $\sigma \neq 0$, zero otherwise.
- Define pseudoinverse of (possibly rectangular) diagonal matrix by transposing and taking scalar pseudoinverse of each entry.
- Then *pseudoinverse* of general real $m \times n$ matrix A is given by

$$A^+ = V \Sigma^+ U^T$$

- Pseudoinverse always exists whether or not matrix is square or has full rank.
- If A is square and nonsingular, then $A^+ = A^{-1}$.
- In all cases, minimum-norm solution to $Ax \approx b$ is given by $x = A^+ b$.

Michael T. Heath
Scientific Computing
Orthogonal Bases

- SVD of matrix, $A = U \Sigma V^T$, provides orthogonal bases for subspaces relevant to A

- Columns of U corresponding to nonzero singular values form orthonormal basis for span(A)

- Remaining columns of U form orthonormal basis for orthogonal complement span(A)$^\perp$

- Columns of V corresponding to zero singular values form orthonormal basis for null space of A

- Remaining columns of V form orthonormal basis for orthogonal complement of null space of A
Another way to write SVD is

\[A = U \Sigma V^T = \sigma_1 E_1 + \sigma_2 E_2 + \cdots + \sigma_n E_n \]

with \(E_i = u_i v_i^T \)

- \(E_i \) has rank 1 and can be stored using only \(m + n \) storage locations
- Product \(E_i x \) can be computed using only \(m + n \) multiplications
- Condensed approximation to \(A \) is obtained by omitting from summation terms corresponding to small singular values
- Approximation using \(k \) largest singular values is closest matrix of rank \(k \) to \(A \)
- Approximation is useful in image processing, data compression, information retrieval, cryptography, etc.

< interactive example >
Total Least Squares

- Ordinary least squares is applicable when right-hand side b is subject to random error but matrix A is known accurately.
- When all data, including A, are subject to error, then total least squares is more appropriate.
- Total least squares minimizes orthogonal distances, rather than vertical distances, between model and data.
- Total least squares solution can be computed from SVD of $[A, b]$.
Comparison of Methods

- Forming normal equations matrix $A^T A$ requires about $n^2m/2$ multiplications, and solving resulting symmetric linear system requires about $n^3/6$ multiplications.

- Solving least squares problem using Householder QR factorization requires about $mn^2 - n^3/3$ multiplications.

- If $m \approx n$, both methods require about same amount of work.

- If $m \gg n$, Householder QR requires about twice as much work as normal equations.

- Cost of SVD is proportional to $mn^2 + n^3$, with proportionality constant ranging from 4 to 10, depending on algorithm used.
Comparison of Methods, continued

- Normal equations method produces solution whose relative error is proportional to $[\text{cond}(A)]^2$

- Required Cholesky factorization can be expected to break down if $\text{cond}(A) \approx 1/\sqrt{\epsilon_{\text{mach}}}$ or worse

- Householder method produces solution whose relative error is proportional to

$$\text{cond}(A) + \|r\|_2 [\text{cond}(A)]^2$$

which is best possible, since this is inherent sensitivity of solution to least squares problem

- Householder method can be expected to break down (in back-substitution phase) only if $\text{cond}(A) \approx 1/\epsilon_{\text{mach}}$ or worse
Comparison of Methods, continued

- Householder is more accurate and more broadly applicable than normal equations.
- These advantages may not be worth additional cost, however, when problem is sufficiently well conditioned that normal equations provide sufficient accuracy.
- For rank-deficient or nearly rank-deficient problems, Householder with column pivoting can produce useful solution when normal equations method fails outright.
- SVD is even more robust and reliable than Householder, but substantially more expensive.