
Propositional logic (Ch. 7)

Representing knowledge

So far we have looked at algorithms to find
goals via search, where we are provided with
all the knowledge and possibly a heuristic

With CSP we saw how to apply inference to
rules to find the goal

Now we will expand more on that and fully
represent a knowledge base that will store
the rules/constraints and what we see/deduce

Logic

Minesweep?

http://minesweeperonline.com/
Write down any “deductions/rules” you find!

Logic

One example of a simple rule:
The 1 in corner marks
flag as a mine

Another rule:
The two can mark the two outer mines
if flanked by ones

safe

Logic

The goal is to simply tell the computer about
the rules of the game

Then based on what it sees as it plays, it will
automatically realize these “safe plays”

This type of reasoning is important in partially
observable environments as the agent must
often reason on new/unseen information

Logic: definitions

A symbol represents a part of the environment
(e.g. a minesweep symbol might be if a cell
has a mine or not), like math variables

Each single piece of the knowledge base is a
sentence involving at least one symbol

A model is an assignment of symbols,
a “possible outcome” of the environment
(typically we look at assignments that work)

will mostly call them variables

Logic: definitions

Let’s consider a simple sentence:
“I’m happy if it is summer or the weekend”

In logic, this could be:

... breaking this down into the terminology:

One possible model
would be:
Summer=false, Weekend=true, Happy=true

http://minesweeperonline.com/

In our (current) logic, we allow 5 operations:
 = logical negation (i.e. “not T” = F)
 = AND operation
 = OR operation (Note: not XOR)

 = “implies” operation
= “if and only if” operation (iff)

The order of operations (without parenthesis)
is top to bottom

Logic: definitions

Here are the truth tables:

And equivalent laws:

Logic: definitions

We mentioned a symbol is P1,3,2 but a literal
is either P1,3,2 or ¬P1,3,2

Two notes:
OR is not XOR (exclusive or), which is not the
English “or” (e.g. ordering food)

“implies” only provides information if left
hand side is true (e.g. F = cats can fly, B = cats
are birds: F implies B is true...)

Logic: definitions

Logic: definitions

In propositional logic, a symbol is either true
or false (as it represents a proposal of a
“variable”)

If “m” is a model and is “α” a sentence,
m satisfies α means α is true in m (also said
as “m models α”)

Let M(α) be all models that satisfy α

Logic: example

For example, consider a 3x3 minesweep:

After the first play we have:

Let us define P2,3,2 as the proposition that
row 2, column 3 cell has value 2 (i.e. α=P2,3,2)

After playing the first move, we add to the
knowledge base that this proposition is true
(this representation has 10^9 states)

Logic: example

Here is one possible assignment:

This does not satisfy our proposition
P2,3,2 as there are only two mines adjacent to
row 2, column 3 cell

So the assignment does not represent our
knowledge base (i.e. the picture not in M(α))

Logic: entailment

We say β entails α (β╞ α) if and only if every
model with β true, α is also true
(similar to “implies” where β→α has
if β=T, then α=T also)

Another definition (mathy):
β╞ α if and only if M(β) subset M(α)

This means there are fewer models true
with proposition β than α

Logic: entailment

Consider this example:
There are two valid configurations based on
our knowledge base:

If we let α = {mine at (2,2)}, then this can
mean (if we also know the numbered cells):

We can see that M(above) subset M(α(below))

Logic: entailment

However, if we let β = mine at (3,2), we get:

M(knowledge base (KB)) is (again):

This is not entailment, as this is not in M(β),
thus KB╞ β (in other words “from the KB,
you cannot conclude (3,2) is a mine”)

Logic: entailment

Entailment may seem like implies, but the
scope they are working on is different

Implies needs to know if the values of the
symbols in order to give T/F answer

Entailment shares the “if... then...” thought
process, but does not need values to deduce:

need to know one or both to make a statement about Happy

Logic: model checking

Entailment can generate new sentences for our
knowledge base(i.e. can add “mine at (2,2)”)

Model checking is when we write out all the
actual models (as I did in the last example)
then directly check entailment

This is exponential, and unfortunately this is
very typical (although some are much
worse exponential than others)

Logic: model checking

Model checking...
1. Preserves truth through inference
2. Is complete, meaning it can derive any

sentence that is entailed (and in finite time)

The “complete” is important as some
environments have an infinite number of
possible sentences

Check model

We can make use model checking to make
an inference algorithm, much the same way
we modified DFS to do backtracking search
1. Enumerate possibilities on a symbol for

all values (T/F) ANDed together... recursive
call on next symbol

2. Once all symbols are assigned, check if
inconsistent (KB=T, α=F), if not return false
(all the way up tree due to recursive call)

Check model

Example: suppose our KB is “P implies Q”
We want to check α = “not P”

Try to use model checking to find if:
KB entails α

(1) Write this as a truth table
(2) Write this as a tree
(3) Which way is better? Why?

Check model

Example: suppose our KB is “P implies Q”
We want to check α = “not P”
Enumerate P: {P = true}, {P = false}
Enumerate Q: {P=T,Q=T}, {P=T,Q=F},
{P=F,Q=T}, {P=F,Q=F}

Consistent?

No! (top row)
“not P” is false when “P implies Q” is true

P Q not P P → Q

T T F T

T F F F

F T T T

F F T T

	Slide 1
	Slide 3
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

