
Planning (Ch. 10)

Planning

Planning is doing a sequence of actions to
achieve one or more goals

This differs from search in that there are often
multiple objectives that must be done (states
can have similarities, not just “different”)

You can always reduce a planning problem
to a search problem, but this is quite often
very expensive

Search

Search: How to get from point A to point B
quickly? (Only considering traveling)

Planning

Planning: multiple tasks/subtasks need to be
done and in what order? (pack, travel, unpack)

Search vs planning

Searching: finding a single goal
Planning: must complete multiple tasks on the

way to an ultimate goal
Search: Plan:

Planning: definitions

The book uses Planning Domain Definition
Language (PDDL) to represent states/actions

PDDL is very similar to first order logic
in terms of notation (states are now similar
to what our knowledge base was)

The large difference is that we need to define
actions to move between states

Planning: state

A state is all of the facts ANDed together in
FO logic, but want to avoid:
1. Variables(otherwise it would not be specific)
2. Functions (just replace them with objects)
3. Negations (as we assume everything not

mentioned is false)

1

2
3
4

5
6

7
8

A B C D E F G H

Planning: actions

Actions have three parts:
1. Name (similar to a function call)
2. Precondition (requirements to use action)
3. Effect (unmentioned states do not change)

For example:

remove black's turn

1

2
3
4

5
6

7
8

A B C D E F G H

Planning: actions

Planning: example

Let's look at a grocery store example:
Objects = store locations and food items

Aisle 1 = Milk, Eggs
Aisle 2 = Apples, Bananas
Aisle 3 = Bread, Candy,

ToiletPaper

Planning: example

Planning: example

Initial state = At(Door)
A possible solution:
1. GoTo(Aisle1) 2. Add(Milk)
3. Add(Eggs) 4. GoTo(Aisle2)
5. Add(Apples) 6. GoTo(Aisle3)
7. Add(Bread) 8. Add(ToiletPaper)
9. GoTo(Aisle2) 10. Add(Bananas)
11. GoTo(Checkout)

Not most efficient, but goal reached

Planning: decidability

Since our planning is similar to FO logic,
it is unsurprisingly semi-decidable as well

Thus, in general you will be able to find a
solution if it exists, but possibly be unable
to tell if a solution does not exist

If there are no functions or we know the goal
can be found in a finite number of steps, then
it is decidable

Planning: actions

If we treat the current state like a knowledge
base and actions with s for every variable...

“state entails Precondition(A)” means action
A's preconditions are met for the state

Thus if each action uses v variables, each with
k possible values, there are O(kv) actions
(we can ignore actions that do not change
the current state in some cases)

Planning: difficulty

PlanSAT tells whether a solution exists or not,
but takes PSPACE to tell

If negative preconditions are not allowed, we
find a solution in P, and optimal in NP-hard

Planning: algorithms

Again similar to FO logic, there are two basic
algorithms you can use to try and plan:

1. Forward search - similar to BFS and check
all states you can find in 1 action, then 2
actions, then 3... until you find the goal state

2. Backward search - start at goal and try to
work backwards to initial state

Forward search

Forward search is a brute force search that
finds all possible states you can end up in

Each action is tested on each state currently
known and is repeated until the goal is found

This can be quite costly, as actions that do not
lead to the goal could be repeatedly explored
(we will see a way to improve this)

Forward search

At(Door)

At(Aisle1)

At(Aisle2)

At(Aisle3)

At(Checkout)

At(Door)
GoTo(Door)

GoTo(Checkout)

...

...

...

...

At(Aisle1)
Cart(Milk)

At(Door)

At(Aisle1)

...

AddMilk()

can ignore

Forward search

You try it!
Initial: At(Truck, UPSD) ^ Package(UPSD, P1)

^ Package(UPSD, P2) ^ Mobile(Truck)
Goal: Package(H1, P1) ^ Package(H2, P2)

Find match
m/Truck
x/P1, y/UPSD

Apply effects

Forward search

Do I need the “Mobile()” at all?

Do I need separate actions for Load() and
Deliver() or can I just have the “house load
from truck”?

Forward search

While the solution might seem obvious to us,
the search space is (surprisingly) quite large

The brute force way (forward search) simply
looks at all valid actions from the current state

We can then search it in using BFS (or iterative
deepening) to find fewest action cost goal

Forward search

At(USPD)

At(H1)

At(H2)

At(USPD) ^ Package(P1)

At(USPD)
GoTo(Truck, USPD)

Load(USPD, P1, USPD)

...

...

At(H1)

At(H2)

...

can ignore

At(USPD)

...

At(USPD)

Forward search

Actions: 3 (Move, Deliver, Load)
Objects: 6 (Truck, USPD, H1, H2, P1, P2)
Min moves to goal: 6 (L, L, G, D, G, D)

Despite this problem being simplistic,
the branching factor is about 4 to 5
(even with removing redundant actions)

This means we could search around 10,000
states before we found the goal

Forward search

This search is actually much more than the
number of states due to redundant paths

Package() can be: UPSD, Truck, H1, H2
At() can be: USPD, Truck, H1, H2, P1, P2

There are 2 packages for Package()
There is 1 truck for At()

So total states = 4^2 * 6 = 96

Backward search

Like to backward chaining in first order logic,
we can start at the goal state go backwards

This helps reduce the number of redundant
states we search (sorta), but this adds some
complications (discuss in a bit)

As our actions are defined “going forwards”
we have to apply the actions “in reverse”
(or an inverse action: action-1())

Backward search

The book gives the full formal way to apply
actions in reverse:

... where POS() are the positive relations in
a state (and NEG() is similarly negative)

ADD() are the relations that will be added by
the action (and DEL() the relations that will
be removed/deleted by the action)

Backward search

So to do an action “backwards”:
1. Removing action effects (in reverse)

All positive effect relations are removed
If we are using negative relations, all
negative effect relations are removed
2. Adding in precondition effects (pos&neg)

Backward search

So to do an action “backwards”:
1. Removing action effects (in reverse)

All positive effect relations are removed
If we are using negative relations, all
negative effect relations are removed
2. Adding in precondition effects (pos&neg)

Backward search

So if we started with: Package(H2,P2)
Substitute: y/H2, x/P2 (m can stay just “m”)
Remove positives: Package(H2,P2)
Remove negatives: (nothing to do as “start”

state has no negatives, just Package(H2,P2))
Add precondition: At(m,H2) ^ Package(m,P2)

Final result: At(m,H2) ^ Package(m, P2)

Try to continue from here!

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 58

