Planning (Ch. 10)

Goog

the droids we're looking forl

Planning

Planning is doing a sequence of actions to
I achieve one or more goals

This differs from search in that there are often
multiple objectives that must be done (states
can have similarities, not just “different”)

You can always reduce a planning problem
to a search problem, but this is quite often
very expensive

Search

Search: How to get from point A to point B
quickly? (Only considering traveli

@ Hemhofen Hausen
ur | Ronenbach Baiersdorf Eftelthen
E:} Mohrendorf
Lengensendalbact
orf =7 efdort Bubenreuth MNeunkirchen Igenadort
am Brand
(=13 Erangen 2
Uttenreuth
Buckanhof
Eckental
fZ0{ *naurach
Falchrautt
Heroldsberg

Vi Isbronn 2

E45

4 Rothenbach
Saul-ndor Firth an der Pegnitz
Wzl Schwaig Bed
Fimdort Nurnberg NOmberg
irndon D
erndart Oberasbach
Roftal '[
14 v
Feucht
Schwarzenbruck
L}

Fale Wendelstein

Crmhumaharch

PG TORIaTY

ng)

Satellite

Betzensten

Plech

Neuhaus an

der. Pegnitz

85

VE&EOEn

Fomgslesn

Harlenslen

&2

Sciymaittach

IDr‘ag to change route l'a chbach

Meun ..'I‘I'h"l"

amisand Etzelwang Ne
Sulrbi
Hersbruck
14 SDIuC
: ,-_;1 8 cof Hao Pommelsbrunn 14
Pegnitz = i tenfeid appurg
Lemburg Offenhausen lilg
Birgland
— Adfeld
ES56 p—
=50 gy g |
Aldorf bel
Winkelhaid NUmbem
r Lauterhofen

Burgthann

E‘ﬁawﬂ.ﬁmf‘[Tele Atlas - T

I Planning

Planning: multiple tasks/subtasks need to be
I done and in what order? (pack, travel, unpack)

I Search vs planning

Searching: finding a single goal

Planning: must complete multiple tasks on the
way to an ultimate goal

Search: Plan:

N l_ff,

I Planning: definitions

The book uses Planning Domain Definition
I Language (PDDL) to represent states/actions

PDDL is very similar to first order logic
in terms of notation (states are now similar
to what our knowledge base was)

The large difference is that we need to define
actions to move between states

I Planning: state

A state is all of the facts ANDed together in
FO logic, but want to avoid:

1. Variables(otherwise it would not be specific)
2. Functions (just replace them with objects)

3. Negations (as we assume everxthnggEngt

mentioned is false) I B
State = BKnight(D,8) A BPawn(C, 7] _ &

ABKing(D,7) AW Pawn(B, 6)
AW Knight(C,6) AW Rook(E, 6) A
ATurn(Black)

H

G
L

A

.]

I Planning: actions

Actions have three parts:

1. Name (similar to a function call)

2. Precondition (requirements to use action)
3. Effect (unmentioned states do not change)

For example:
Action(MoveBKnight RRD(x,y),

Precondition: BKnight(z,y) A Turn(Black),
Effect: =BKnight(x,y) AN BKnight(x + 2,y — 1)
A=Turn(Black) N\ Turn(W hite)

™ remove black's turn

Planning: actions

I State =|BKnight(D,8)|A BPawn(C,7)
ABKing(D,7) AW Pawn(B, 6)
AW Knight(C,6) AW Rook(E, 6) A ... \Turn(Black

A B C D FE F G H

State =|BKnight(F,7)A BPawn(C,T)
ABKing(D,7) AW Pawn(B, 6)

AW Knight(C,6) A W Rook(E,6) A ...
/i

I Let's look at a grocery store example:

I Obijects = store locations and food items
Goal = At(Checkout) A Cart(Milk) A Cart(Apples)

ACart(Eggs) A Cart(Toilet Paper) A Cart(Bananas)

ACart(Bread) A —~Cart(Candy)

Planning: example

7 1 firs.o . i
Aisle 1 = Milk, Eggs i Shopping I
1 — itk ()
Aisle 2 = Apples, Bananas &= = ,gpg.;;:
it 'h_i . T ey T ggs ““

Aisle 3 = Bread, Candy,
ToiletPaper

L . 3. : e
- =T s - Tollet rolls
= o Bananas &
' o
INEWH T~) Bread
S

%
A
<
E
¥

f{

S O

Planning: example
Action(Golo(x,vy), Action(AddApples(),
Precondition: At(x), Precondition: At(Aisle2),
]-Effect: —At(x) N\ At(y))Effect: Cart(Apples))

Action(AddMilk(), Action(AddBananas(),
Precondition: At(Aislel),Precondition: At(Aisle2),
Effect: Cart(Milk)) Effect: Cart(Bananas))

Action(AddEggs(), Action(AddBread(),
Precondition: At(Aislel),Precondition: At(Aisle3),
Effect: Cart(Fggs)) Effect: Cart(Bread))

Action(AddCandy(), Action(AddT oilet Paper(),
Precondition: At(Aisle3),Precondition: At(Aisle3),
Effect: Cart(Candy)) Effect: Cart(Toilet Paper))

Planning: example

Initial state = At(Door)

A possible solution:

1. GoTo(Aislel) 2. Add(Milk)

3. Add(Eggs) 4. GoTo(Aisle2)

5. Add(Apples) 6. GoTo(Aisle3)

7. Add(Bread) 8. Add(ToiletPaper)
9. GoTo(Aisle2) 10. Add(Bananas)
11. GoTo(Checkout)

Not most efficient, but goal reached

Planning: decidability

Since our planning is similar to FO logic,
I it is unsurprisingly semi-decidable as well

Thus, in general you will be able to find a
solution if it exists, but possibly be unable
to tell if a solution does not exist

If there are no functions or we know the goal
can be found in a finite number of steps, then
it is decidable

I If we treat the current state like a knowledge
I base and actions with Vs for every variable...

Planning: actions

“state entails Precondition(A)” means action
A's preconditions are met for the state

Thus if each action uses v variables, each with
k possible values, there are O(k") actions

(we can ignore actions that do not change

the current state in some cases)

I PlanSAT tells whether a solution exists or not,
I but takes PSPACE to tell

Planning: difficulty

If negative preconditions are not allowed, we
find a solution in P, and optimal in NP-hard

.,
.
o
"

.-"-. .-'.---. _..".] .“] ..'-._ ..\'\"\-.
s a - "“-._ ™, . o
> | NP | PSPACE | EXPTIME | /"F-cwplm\ / \\
J _' ! i i i i
. y J 4] | 1 ! F=H |
! " .,
. " - -

f'. |I NF . || | NF-Complets
= =

I Again similar to FO logic, there are two basic
I algorithms you can use to try and plan:

Planning: algorithms

1. Forward search - similar to BFS and check
all states you can find in 1 action, then 2
actions, then 3... until you find the goal state

2. Backward search - start at goal and try to
work backwards to initial state

I Forward search

Forward search is a brute force search that
I finds all possible states you can end up in

Each action is tested on each state currently
known and is repeated until the goal is found

This can be quite costly, as actions that do not
lead to the goal could be repeatedly explored
(we will see a way to improve this)

I Forward search
I AddMilk

GoTo(Door)
N

GoTo(Checkout)YA t(Checkout

)

Action(GoTo(xz,y, z),
Precondition: At(x,y) A Mobile(x),

You try it! Effect: —At(x,y) N At(x, z))
Initial: At(Truck, UPSD) A Package(UPSD, P1)
A Package(UPSD, P2) A Mobile(Truck)

Goal: Package(H1, P1) A Package(H2, P2)
Action(Load(m,x,y),

Precondition: At(m,y) A Package(y,),

Effect: —=Package(y, x) A Package(m,x) A\ At(m,y))
Action(Deliver(m, x,y),

Precondition: At(m,y) A Package(m, x),
Effect: —Package(m,x) A Package(y,x) A At(m,y))

I Forward searc

At(Truck, UPSD) N Package(UPSD, P1)
APackage(UPSD, P2) N\ Mobile(Truck)

At(Truck, UPSD) N Package(UPSD, P1)
APackage(UPSD, P2) N\ Mobile(Truck)

E The upg Store B

— =l = P 1] = -
- - R Ty ﬁ .-ll- -
, - i |
| S] [z [y
H 3 1: - ,i
| e L kg E
o silfl B HE T

e i | Ir_Il.-"‘: ¥

Action(Load(m, z,y),
" Precondition: At(m,y) A Package(y, z),
Eftect: ~Package(y,) A Package(m, z))

SO

At(I'ruck, UPSD) N\ Package(UPSD, P1
Package UPSD, P2) N\ Mobile Truck

. [BTN Find match
#H SR g m/Truck

=B} /P1, y/UPSD

g Action(Load(m, z
" Precondition: |At(m,y) A Package(y, z)|

Eftect: ~Package(y,) A Package(m,z))

At(Truck,UPSD) N\ Eackagetor a1
/\Package(UPSD P2) A Mobile(Truck
/ N |25 APackage(Truck, P1

Apply etfects

Action(Load(Truck P1,UPSD),

Precondition: At({Truck,UPSD) A Package(UPSD, P1),
Ettect: {=Package(U'P5D, PV Package(Truck, P1

At(Truck,UPSD) N Package(Truck, P1)
/\Package(UPSD P2) A Mobile(Truck)

Action(Load(Truck PL.UPSD),
Precondition: At(Truck, UPSD) A Package(U/PSD, P2),
Eftect: ~Package(UPSD, P2) Package(Truck, P1),

At(Truck,UPSD) N Package(Truck, P1)
/\Package(Truck P2) A Mobile(Truck)

At(Truck, H1) N\ Package(Truck, P1)
/\Package(Truck P2) A Mobile(Truck)

o Action(Deliver(Truck, P1, H1),
1 Precondition: At(Truck, H1) \ Package(Truck, P1),

=5 5 o Fffect ~Package(Truck, P1) A Package(H1, P1))

At(Truck, H1) A\ Package(H1, P1)
APackage(Truck, P2) N Mobile(Truck)

f= TEEUPSStwe% Action(GoTo(Truck, H1, H2),
> EEEEE*I Precondition: At(Truck, H1) A Mobile(Truck),
W RS Difect: ~At(Truck, H1) A At(Truck, H2))

At(Truck, H2) \ Package(H1, P1)
APackage(Truck, P2) N Mobile(Truck)

= |15 Precondition: At(Truck, H2) A Package(Truck, P2),
SO Fffect: ~Package(Truck, P2) A Package(H2, P2))

At(Truck, H2) \ Package(H1, P1)
ANPackage(H2, P2) A Mobile(Truck)

I Action(GoTo(xz,y, z),
FOI‘\Precondition: At(x,y) N\ Mobile(x),
I Effect: —At(x,y) A At(x, z))

Do I need the “Mobile()” at all?

I Do I need separate actions for Load() and
Deliver() or can I just have the “house load

from truck”?
Action(Load(m,x,y),

Precondition: At(m,y) A Package(y, x),

Effect: =Package(y, x) N Package(m,x) A At(m,y))
Action(Deliver(m,x,y),

Precondition: At(m,y) A Package(m, x),

Effect: —Package(m.) N\ Package(y,x) N At(m. y))

While the solution might seem obvious to us,
I the search space is (surprisingly) quite large

Forward search

The brute force way (forward search) simply
looks at all valid actions from the current state

We can then search it in using BFS (or iterative
deepening) to find fewest action cost goal

I Forward search

IGoTo(Truck, USPD
I At(USPD)g --- JAt(USPD)

At(USPD) /N Package(Pl)l&---

At(USPD)
Load(USPD, P1, USPD)

Forward search

Actions: 3 (Move, Deliver, Load)
Objects: 6 (Truck, USPD, H1, H2, P1, P2)
Min moves to goal: 6 (L, L, G, D, G, D)

Despite this problem being simplistic,
the branching factor is about 4 to 5
(even with removing redundant actions)

This means we could search around 10,000
states before we found the goal

Forward search

This search is actually much more than the
I number of states due to redundant paths

Package() can be: UPSD, Truck, H1, H2
At() can be: USPD, Truck, H1, H2, P1, P2

There are 2 packages for Package()
There is 1 truck for At()

So total states = 4A2 * 6 = 96

Like to backward chaining in first order logic,
I we can start at the goal state go backwards

Backward search

This helps reduce the number of redundant
states we search (sorta), but this adds some
complications (discuss in a bit)

As our actions are defined “going forwards”
we have to apply the actions “in reverse”
(or an inverse action: action™())

I The book gives the full formal way to apply
I actions in reverse:

POS(new state) = (POS(old state) - ADD(action)) U POS(Precondition(action))
NEG (new state) = (NEG(old state) - DEL(action)) U NEG(Precondition(action))

Backward search

... where POS() are the positive relations in
a state (and NEG() is similarly negative)

ADD() are the relations that will be added by
the action (and DEL() the relations that will
be removed/deleted by the action)

ackwargm arch

POS(new state) = (POS(old state POS (Precondition(action))
NEG (new state (NEG(old state - DEL(action)) U NEG(Precondltlon(actlon))
SO0 to do an action backwards

1. Removing action effects (in reverse)
All positive effect relations are removed
If we are using negative relations, all
negative effect relations are removed
2. Adding in precondition effects (pos&neg)
Action(Deliver(m,x,y),
Precondition: At(m,y) A Package(m, x),
Effect: —Package(m,x) N Package(y, x))

‘Backward search
POS(new state) = (POS(old state) - AD actlon U POS(Precondition(action))

NEG (new state (NEG(old stai€) - DEL(actlon U NE& (Precondition(action))
SO0 to do an acti ckwards /:

1. Removingdction effects (il reverse)
All positive etfect relations/are removed
If we are using negative yélations, all
negative etfect relationg are removed
2. Adding in precondition effects (pos&neg)
Action(Deliver(m,x,y),
Precondition: At(m,y) A Package(m, x),
Effect: —Package(m,x) N Package(y, x))

Backward search

Action(Deliver(m,x,y),
Precondition: At(m,y) A Package(m, x),
Effect: —Package(m,x) N\ Package(y, x))

So if we started with: Package(H2,P2)

Substitute: y/H2, x/P2 (m can stay just “m”

Remove positives: Package(H2,P2)

Remove negatives: (nothing to do as “start”
state has no negatives, just Package(H2,P2))

Add precondition: At(m,H2) A Package(m,P2)

At(Truck, H2) N\ Package(H1, P1)
/\Package(Truck P2) A Mobile(Truck)

Try to continue from here!

Action(Load(m,z,y),

Action(Deliver(m,z,y), Precondition: At(m,y) A Package(y, z),
Precondition: At(m, y) A Package(m, z), Effect: ~Package(y, z) A Package(m, z) A At(m,)
Effect: ~Package(m,z) A Package(y, x) A At(m,y))

Action(GoT'o(z,y, 2), e
Precondition: At(z,y) A Mobile(z), & Eas
Effect: —At(z,y) A At(x, 2)) o

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 58

