
Informed Search (Ch. 3.5-3.6)



Informed search

In uninformed search, we only had the node
information (parent, children, cost of actions)

Now we will assume there is some additional
information, we will call a heuristic that 
estimates the distance to the goal

Previously, we had no idea how close we were
to goal, simply how far we had gone already



Greedy best-first search

To introduce heuristics, let us look at the tree
version of greedy best-first search

This search will simply repeatedly select the
child with the lowest heuristic(cost to goal est.)



Greedy best-first search

This finds the path: Arad -> Sibiu -> Fagaras
-> Bucharest

However, this greedy approach is not optimal,
as that is the path: Arad -> Sibiu -> Rimmicu
Vilcea -> Pitesti -> Bucharest

In fact, it is not guaranteed to converge (if a 
path reaches a dead-end, it will loop infinitely)



A*

We can combine the distance traveled and the
estimate to the goal, which is called A* (a star)

The method goes: (red is for “graphs”) 
initialize explored={}, fringe={[start,f(start)]}
1.  Choose C = argmin(f-cost) in fringe 
2.  Add or update C's children to fringe, with

associated f-value, remove C from fringe
3.  Add C to explored
4. Repeat 1. until C == goal or fringe empty



A*

f(node) = g(node) + h(node)

We will talk more about what heuristics are
good or should be used later

Priority queues can be used to efficiently store
and insert states and their f-values into the
fringe

total cost estimate
distance gone (traveled) so far

heuristic
(estimate to-goal distance)



A*



A*
Step: Fringe (argmin)
0: [Arad, 366]
1: [Zerind, 75+374],[Sibu, 140+253],[Timisoara, 118+329]
1: [Zerind, 449], [Sibu, 393], [Timisoara, 447]
2: [Fagaras, 140+99+178], [Rimmicu Vilcea, 140+80+193],

[Zerind, 449], [Timisoara, 447], [Oradea, 140+151+380]
2: [Fagaras, 417], [Rimmicu Vilcea, 413], [Zerind, 449], 

[Timisoara, 447], [Oradea, 671] 
3: [Craiova, 140+80+146+160], [Pitesti, 140+80+97+98], 

[Fagaras, 417], [Zerind, 449], [Timisoara, 447], [Oradea, 671] 
3: [Craiova, 526], [Pitesti, 415], [Fagaras, 417], [Zerind, 449], 

[Timisoara, 447], [Oradea, 671] 
4: ... on next slide



A*
4: [Craiova from Rimmicu Vilcea, 526], [Fagaras, 417], 

[Zerind, 449], [Timisoara, 447], [Oradea, 671], 
[Craiova from Pitesti, 140+80+97+138+160],
[Bucharest from Pitesti, 140+80+97+101+0]

4: [Craiova from Rimmicu Vilcea, 526], [Fagaras, 417], 
[Zerind, 449], [Timisoara, 447], [Oradea, 671], 
[Craiova from Pitesti, 615], [Bucharest from Pitesti, 418]

5: [Craiova from Rimmicu Vilcea, 526], [Zerind, 449], 
[Timisoara, 447], [Oradea, 671], [Craiova from Pitesti, 615],
[Bucharest from Pitesti, 418], 
[Bucharest from Fagaras, 140+99+211+0 = 450]

Goal!



A*

You can choose multiple heuristics (more later)
but good ones skew the search to the goal

You can think circles based on f-cost:
-if h(node) = 0, f-cost are circles
-if h(node) = very good, f-cost long and thin

ellipse

This can also be though of as topographical
maps (in a sense)



A*

h(node) = 0
(bad heuristic, no
goal guidance)

h(node) = straight
line distance
(good heuristic)



A*

Good heuristics can remove “bad” sections
of the search space that will not be on any
optimal solution (called pruning)

A* is optimal and in fact, no optimal algorithm
could expand less nodes (optimally efficient)

However, the time and memory cost is still
exponential (memory tighter constraint)



A*

You do it! Find path S -> G

Arrows show children (easier for you)

(see: https://www.youtube.com/watch?v=sAoBeujec74 )



Iterative deepening A*

You can combine iterative deepening with A*

Idea:
1. Run DFS in IDS, but instead of using depth

as cutoff, use f-cost
2. If search fails to find goal, increase f-cost

to next smallest seen value (above old cost)

Pros: Efficient on memory
Cons: Large (LARGE) amount of re-searching



Iterative deepening A*

Consider the following tree
and heuristic 

Let’s run IDA* on this
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Iterative deepening A*

Iterative deepening, round 1:
Limit = h(s) = 7

Run DFS expanding nodes
less (or =) limit

Fringe:
1: (S,7)
2: (A,10), (B,9)
3: (A,10)
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This is DFS FILO
not finding minimum



Iterative deepening A*

Smallest f-cost above limit
in previous search = 9

New limit = 9
1: (S,7)
2: (A,10), (B,9)
3: (A,10), (C,14)
4: (A,10)
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Iterative deepening A*

Smallest f-cost above limit
in previous search = 10 =limit
1: (S,7)
2: (A,10), (B,9)
3: (A,10), (C,14)
4: (A,10)
5:(B,7),(C,13),(G,16)
6:(B,7), (C,13)
7: (B,7)
8: (C,11)
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https://www.youtube.com/watch?v=sAoBeujec74


Iterative deepening A*

Smallest f-cost above limit
in previous search = 11 =limit

... and repeat this
process until goal
is found

Since search is
DFS, memory 
efficient
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SMA*

One fairly straight-forward modification to A*
is simplified memory-bounded A* (SMA*)

Idea:
1. Run A* normally until out of memory
2. Let C = argmax(f-cost) in the leaves
3. Remove C but store its value in the parent

(for re-searching)
4. Goto 1



SMA*

Here assume you
can only hold
at most 3 nodes
in memory

(see http://www.massey.ac.nz/~mjjohnso/notes/59302/l04.html)



SMA*

SMA* is nice as it (like A*) find the optimal
solution while keeping re-searching low
(given your memory size)

IDA* only keeps a single number in memory,
and thus re-searches many times
(inefficient use of memory)

Typically there is some time to memory 
trade-off
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