
Informed Search (Ch. 3.5-3.6)

Informed search

In uninformed search, we only had the node
information (parent, children, cost of actions)

Now we will assume there is some additional
information, we will call a heuristic that
estimates the distance to the goal

Previously, we had no idea how close we were
to goal, simply how far we had gone already

Greedy best-first search

To introduce heuristics, let us look at the tree
version of greedy best-first search

This search will simply repeatedly select the
child with the lowest heuristic(cost to goal est.)

Greedy best-first search

This finds the path: Arad -> Sibiu -> Fagaras
-> Bucharest

However, this greedy approach is not optimal,
as that is the path: Arad -> Sibiu -> Rimmicu
Vilcea -> Pitesti -> Bucharest

In fact, it is not guaranteed to converge (if a
path reaches a dead-end, it will loop infinitely)

A*

We can combine the distance traveled and the
estimate to the goal, which is called A* (a star)

The method goes: (red is for “graphs”)
initialize explored={}, fringe={[start,f(start)]}
1. Choose C = argmin(f-cost) in fringe
2. Add or update C's children to fringe, with

associated f-value, remove C from fringe
3. Add C to explored
4. Repeat 1. until C == goal or fringe empty

A*

f(node) = g(node) + h(node)

We will talk more about what heuristics are
good or should be used later

Priority queues can be used to efficiently store
and insert states and their f-values into the
fringe

total cost estimate
distance gone (traveled) so far

heuristic
(estimate to-goal distance)

A*

A*
Step: Fringe (argmin)
0: [Arad, 366]
1: [Zerind, 75+374],[Sibu, 140+253],[Timisoara, 118+329]
1: [Zerind, 449], [Sibu, 393], [Timisoara, 447]
2: [Fagaras, 140+99+178], [Rimmicu Vilcea, 140+80+193],

[Zerind, 449], [Timisoara, 447], [Oradea, 140+151+380]
2: [Fagaras, 417], [Rimmicu Vilcea, 413], [Zerind, 449],

[Timisoara, 447], [Oradea, 671]
3: [Craiova, 140+80+146+160], [Pitesti, 140+80+97+98],

[Fagaras, 417], [Zerind, 449], [Timisoara, 447], [Oradea, 671]
3: [Craiova, 526], [Pitesti, 415], [Fagaras, 417], [Zerind, 449],

[Timisoara, 447], [Oradea, 671]
4: ... on next slide

A*
4: [Craiova from Rimmicu Vilcea, 526], [Fagaras, 417],

[Zerind, 449], [Timisoara, 447], [Oradea, 671],
[Craiova from Pitesti, 140+80+97+138+160],
[Bucharest from Pitesti, 140+80+97+101+0]

4: [Craiova from Rimmicu Vilcea, 526], [Fagaras, 417],
[Zerind, 449], [Timisoara, 447], [Oradea, 671],
[Craiova from Pitesti, 615], [Bucharest from Pitesti, 418]

5: [Craiova from Rimmicu Vilcea, 526], [Zerind, 449],
[Timisoara, 447], [Oradea, 671], [Craiova from Pitesti, 615],
[Bucharest from Pitesti, 418],
[Bucharest from Fagaras, 140+99+211+0 = 450]

Goal!

A*

You can choose multiple heuristics (more later)
but good ones skew the search to the goal

You can think circles based on f-cost:
-if h(node) = 0, f-cost are circles
-if h(node) = very good, f-cost long and thin

ellipse

This can also be though of as topographical
maps (in a sense)

A*

h(node) = 0
(bad heuristic, no
goal guidance)

h(node) = straight
line distance
(good heuristic)

A*

Good heuristics can remove “bad” sections
of the search space that will not be on any
optimal solution (called pruning)

A* is optimal and in fact, no optimal algorithm
could expand less nodes (optimally efficient)

However, the time and memory cost is still
exponential (memory tighter constraint)

A*

You do it! Find path S -> G

Arrows show children (easier for you)

(see: https://www.youtube.com/watch?v=sAoBeujec74)

Iterative deepening A*

You can combine iterative deepening with A*

Idea:
1. Run DFS in IDS, but instead of using depth

as cutoff, use f-cost
2. If search fails to find goal, increase f-cost

to next smallest seen value (above old cost)

Pros: Efficient on memory
Cons: Large (LARGE) amount of re-searching

Iterative deepening A*

Consider the following tree
and heuristic

Let’s run IDA* on this

S

A B

B C G C

GGC

4 7

5

3

121
8

5 3

G
3 (tree version of last graph,

different edge cost)

Iterative deepening A*

Iterative deepening, round 1:
Limit = h(s) = 7

Run DFS expanding nodes
less (or =) limit

Fringe:
1: (S,7)
2: (A,10), (B,9)
3: (A,10)

S

A B

B C G C

GGC

G

4 7

5

3

121
8

5

3

3

This is DFS FILO
not finding minimum

Iterative deepening A*

Smallest f-cost above limit
in previous search = 9

New limit = 9
1: (S,7)
2: (A,10), (B,9)
3: (A,10), (C,14)
4: (A,10)

S

A B

B C G C

GGC

G

4 7

5

3

121
8

5

3

3

Iterative deepening A*

Smallest f-cost above limit
in previous search = 10 =limit
1: (S,7)
2: (A,10), (B,9)
3: (A,10), (C,14)
4: (A,10)
5:(B,7),(C,13),(G,16)
6:(B,7), (C,13)
7: (B,7)
8: (C,11)

S

A B

B C G C

GGC

G

4 7

5

3

121
8

5

3

3

https://www.youtube.com/watch?v=sAoBeujec74

Iterative deepening A*

Smallest f-cost above limit
in previous search = 11 =limit

... and repeat this
process until goal
is found

Since search is
DFS, memory
efficient

S

A B

B C G C

GGC

G

4 7

5

3

121
8

5

3

3

SMA*

One fairly straight-forward modification to A*
is simplified memory-bounded A* (SMA*)

Idea:
1. Run A* normally until out of memory
2. Let C = argmax(f-cost) in the leaves
3. Remove C but store its value in the parent

(for re-searching)
4. Goto 1

SMA*

Here assume you
can only hold
at most 3 nodes
in memory

(see http://www.massey.ac.nz/~mjjohnso/notes/59302/l04.html)

SMA*

SMA* is nice as it (like A*) find the optimal
solution while keeping re-searching low
(given your memory size)

IDA* only keeps a single number in memory,
and thus re-searches many times
(inefficient use of memory)

Typically there is some time to memory
trade-off

	Slide 1
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

