
Constraint sat. prob. (Ch. 6)



Announcements

Midterm regrades: due Nov. 7th



Types of constraints

Try to do this job problem with: J1, J2 and J3

Jobs cannot overlap
J3 takes 3 time units
J2 takes 2 time units
J1 takes 1 time unit
J1 must happen before J3
J2 cannot happen at time 1
All jobs must finish by time 7 
(i.e. you can start J2 at time 5 but not at time 6)



Applying constraints

We can repeatedly apply our constraint rules
to shrink the domain of variables (we just 
shrunk NT's domain to nothing)

This reduces the size of the domain, making
it easier to check: 

- If the domain size is zero, there are no
solutions for this problem

- If the domain size is one, this variable must
take on that value (the only one in domain)



Applying constraints

AC-3 checks all 2-consistency constraints:

1. Add all binary constraints to queue
2. Pick a binary constraint (X

i
, Y

j
) from queue

3. If x in domain(X
i
) and no consistent y in 

domain(Y
j
), then remove x from domain(X

i
)

4. If you removed in step 3, update all other
binary constraints involving X

i
 (i.e. (X

i
, X

k
))

5. Goto step 2 until queue empty



Applying constraints

Some problems can be solved by applying 
constraint restrictions (such as sudoku)
(i.e. the size of domain is one after reduction)

Harder problems this is insufficient and we
will need to search to find a solution

Which is what we will do... now



CSP vs. search

Let us go back to Australia coloring:

How can you color using search techniques?



We can use an incremental approach:

State = currently colored provinces (and their
color choices)

Action = add a new color to any province  that 
does not conflict with the constraints

Goal: To find a state where all provinces are
colored

CSP vs. search



Is there a problem?

CSP vs. search



Is there a problem?

Let d = domain size (number of colorings),
n = number of variables (provinces)

The number of leaves are n! * dn

However, there are only dn possible states
in the CSP so there must be a lot of duplicate
leaves (not including mid-tree parts)

CSP vs. search



CSP assumes one thing general search does 
not: the order of actions does not matter

In CSP, we can assign a value to a variable at
any time and in any order without changing
the problem (all we care about is the end state)

So all we need to do is limit our search to one
variable per depth, and we will have a match
with CSP of dn leaves (all combinations)

CSP vs. search



Let's apply CSP modified DFS on Australia:
(assign values&variables in alphabetical order)

1st: blue
2nd: green
3rd: red

CSP vs. search

1

2 3

4

5
6

7



CSP vs. search

NSW:

NT:

Q:

SA:
X

X X

B G R

Nothing colored

NSW red
...

...



CSP vs. search

STOP PICKING BLUE EVERY TIME!!!!



CSP backtracking

However, this is still hope for searching (called
backtracking search (it backups up at conflict))

We will improve it by...
1. The order we pick variables
2. The order we pick values for variables
3. Mix search with inference
4. Smarter backtracking



1. What variable?

When picking the variables, we want to the
variable with the smallest domain (the most
restricted variable)

The best-case is that there is only one value
in the domain to remain consistent

By picking the most constrained variables, we
fail faster and are able to prune more of the tree



1. What variable?

Suppose we pick {WA = red}, it
would be silly to try and color V next

Instead we should try to color NT or SA, as
these only have 2 possible colorings, while the
rest have 3

This will immediately let the computer know
that it cannot color NT or SA red (prune
these branches right way)

NT
SA



1. What variable?

But we can do even better!  

If there is a tie for possible values to take, we 
pick the variable with the most connections

This ensures that other nodes are more
restricted to again prune earlier

For example, we should color SA first as it
connects to 5 other provinces 



2. What value?

After we picked a variable to look at,
we must assign a value

Here we want to do the opposite: choose the
value which constrains the neighbors the least

This is “putting your best foot forward” or 
trying your best to find a goal (while failing
fast helps pruning, we do actually want to find
a goal not prune as much as possible)



2. What value?

For example, if we color {WA = red},
then pick Q next

Our options for Q are {red, green or blue}, but
picking {green or blue} limit NT & SA to
only one valid color and NSW to 2

If we pick {Q=red}, then NT, SA & NSW all
have 2 valid possibilities (and this happens to 
be on a solution path)

NA

SA NSW



1. & 2.

An analogy to 1&2 is: “trying our best (2) to
solve the weakest link (1)”

By tackling the weakest link first, it will be 
easier for less constrained nodes to adapt/
pick up the slack

However, we do want to try and solve the
problem, not find the quickest way to fail
(i.e. always picking blue... ... >.<)



3. Mix search & inference?

We described how AC-3 can use inference to 
reduce the domain size

Inference does not need to run in isolation;
it works better to assign a value then apply 
inference to prune before even searching

This works well in combination with 1 as uses
the domain size to choose the variable and 3
shrinks domain sizes to be consistent



3. Mix search & inference?

This is somewhat similar to providing
a heuristic for our original search

Inference lets us know an estimation of what
colors are left and can be done efficiently

We can use this estimate to guide our search
more directly towards the goal



3. Mix search & inference?

In the previous example: {WA = red},
then color Q

We want to choose {Q = red} to allow the most
choices for NT and SA

Without inference we will not know about this
restriction and just have assign and realize
this constraint when we create a conflict



4. Smart backtracking

Instead of moving our search back up a single
layer of the tree and picking from there...

We could backup to the first node above the
conflict that was actually involved in the
conflict

This avoids in-between nodes which did not
participate in the conflict



4. Smart backtracking

Suppose we assigned (in this order):
{WA = B, SA = G, Q = R, T = R} 
then pick NT

NT has all three colors neighboring it, so a
conflict is reached

In normally, we would backtrack and try to
change T (i.e. 4), but this was actually not
involved in the conflict (1, 2 & 3 were) 

1

2

3

4



4. Smart backtracking

This smart backtracking can be
done by looking to see who was in
conflict with the last choice

Here we were picking NT, who has constraints
with: {WA, SA, Q}

Q was the most recent pick in this set, so we
should go there (if there are no options for Q,
we carry over constraints + Q’s constraints)

1

2

3

4



Example

Suppose we have the following statement:
T W O

+ T W O
= F O U R

We want to assign each character a single
digit to make this a valid math equation
(each different letter is a different digit)

How do you represent this as a CSP?



Example

Suppose we have the following statement:
T W O

+ T W O
= F O U R

R = O + O mod 10
U = W + W + floor((O+O)/10) mod 10
O = T+T+floor((W+W+(O+O)/10)/10))mod 10
F = floor((T+T+(W+W)/10)/10) mod 10
T ≠ W ≠ O ≠ F ≠ U ≠ R



Example

R = O + O mod 10
U = W + W + floor((O+O)/10) mod 10
O = T+T+floor((W+W+(O+O)/10)/10))mod 10
F = floor((T+T+(W+W)/10)/10)mod 10
T ≠ W ≠ O ≠ F ≠ U ≠ R

Pictorally:
(relationships) 

O
T R

F U
W



Example

Domains are (as they are digits):
O = R = U = W = {0,1,2,3,4,5,6,7,8,9}
F=T={1,2,3,4,5,6,7,8,9}
(not 0 as leading digit)

However, we can simplify
this by adding more 
variables to represent the 
“carry over” amounts

O
T R

F U
W



Example

R = O + O mod 10
U = W + W + floor((O+O)/10) mod 10
O = T+T+floor((W+W+(O+O)/10)/10))mod 10
F = floor((T+T+(W+W)/10)/10)mod 10
T ≠ W ≠ O ≠ F ≠ U ≠ R
We can simplify the floor by adding auxiliary
variables: C

10
, C

100
 and C

1000
 representing

the “carry over” value from the addition
Specifically, floor((O+O/10) = C

10



Example

R = O + O mod 10
U = W + W + C

10 
mod 10

O = T + T + C
100 

mod 10
F = C

1000 
mod 10

T ≠ W ≠ O ≠ F ≠ U ≠ R
C

10 
= floor((O+O)/10) mod 10 

C
100 

= floor((W+W + C
10

)/10) mod 10
C

1000
 = floor((T+T + C

100
)/10) mod 10

C
10C

100
C

1000

O
T R

F U
W



Example

Domains:
O = R = U = W = 
{0,1,2,3,4,5,6,7,8,9}

F=T={1,2,3,4,5,6,7,8,9}

C
10

 = C
100

 = C
1000

 = {0,1}
(as they are the sum of two single digits)

C
10C

100
C

1000

O
T R

F U
W



Example

We want to pick the
variable with the smallest
domain

All C
x
 tie with a domain size

of two, so we pick the one with the most
connections: C

100
 

So try C
100

 = 0

C
10C

100
C

1000

O
T R

F U
W

0



Example

If C
100

 = 0, we see if we can
shrink any of the domains
that involve C

100
...

Constraints involving C
100

:
O = T + T + C

100 
mod 10

C
100 

= floor((W+W + C
10

)/10) mod 10
C

1000
 = floor((T+T + C

100
)/10) mod 10

We can get: O={0,2,4,6,8} (as O=2T), 
W={0,1,2,3,4} (as floor(W/5) = 0)

C
10C

100
C

1000

O
T R

F U
W

0



Example

Then pick next:
C

10
 = 0, then infer 

O={0,2,4}
U={0,2,4,6,8}
W and T no change

(You could do further inference to reduce U
by using “MAC” inference (i.e. find U must be
even), but I only shrink domains of things 
directly related to the pick)

C
10C

100
C

1000

O
T R

F U
W

0 0



Example

Then pick next:
C

1000
 = 0, then infer 

F = { }, a contradiction

So backup...  This contradiction
involved C

1000
 and F, so we just need to

re-pick C
1000

, C
1000

=1
Thus we can infer:
F={1}, T = {5,6,7,8,9}

C
10C

100
C

1000

O
T R

F U
W

0 00



Example

At this point our picks are:
C

10
 = 0

C
100

 = 0
C

1000
 = 1

Domains:
F = {1}
T = {5,6,7,8,9}
W ={0,1,2,3,4}, O = {0,2,4}
U = {0,2,4,6,8}, R = {0,1,2,3,4,5,6,7,8,9}

C
10C

100
C

1000

O
T R

F U
W

0 01



Example

Next smallest domain is F:
Only one pick, F=1

Since F has to be a
unique digit we can infer:

W = {0,2,3,4}, O = {0,2,4}
R = {0,2,3,4,5,6,7,8,9}
T unchanged = {5,6,7,8,9}
U unchanged = {0, 2, 4, 6, 8}

C
10C

100
C

1000

O
T R

F U
W

0 01
1



Example

Next smallest domain is O

Try O=0 and infer: 
W = {2,3,4}, R = { } ← Invalid
...due to R = 2*O = 0... but R≠O

U = {2,4,6,8}, T={ } ← Invalid
...due to O=T+T+C100 means T=0, but T≠O

C
10C

100
C

1000

O
T R

F U
W

0 01
1

0



Example

Conflict: T involving O and C
100

, 
most recent pick is O

Change to O=2, infer:

T={ } ← Invalid
W = {0,3,4}, R = { 4 }
U = {0,3,4,5,6,7,8,9,}

C
10C

100
C

1000

O
T R

F U
W

0 01
1

2



Example

Conflict: T involving O and C
100

, 
most recent pick is O

Change to O=4, infer:

T={ } ← Invalid
W = {0,2,3}, R = { 8 }
U = {0,2,3,5,6,7,8,9,}

C
10C

100
C

1000

O
T R

F U
W

0 01
1

4



Example

Tried all possible values for O,
none worked so backtrack time

O is constrained by:
C

10
 and C

100 
(as they shrunk the 

domain... also edge in graph (no ≠ constraints))
so we go back and choose C

10
 = 1 (not C

1000
)

(Go back to O, but O has no more options.  
Then go past F, and C

1000
 to C

10
)

C
10C

100
C

1000

O
T R

F U
W

0 01
1

4



Example

Currently have: C
100

=0, C
10

=1

Domains from C
100

=0:
C

1000
 = {0, 1}

F = T = {1,2,3,4,5,6,7,8,9}
U = R = {0,1,2,3,4,5,6,7,8,9}
O = {0,2,4,6,8}, W = {0,1,2,3,4}

C
10C

100
C

1000

O
T R

F U
W

0 1



Example

From picking C
10

=1, we deduce:
O>=5, U=odd

New domains:
C

1000
 = {0, 1}

F = T = {1,2,3,4,5,6,7,8,9}
R = {0,1,2,3,4,5,6,7,8,9}
O = {6,8}, W = {0,1,2,3,4}
U = {1, 3, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1



Example

Tie for smallest domain (O & C
1000

),
O has more connections:
Pick O=6
Constraints: O=2T+0(mod10),
R=2*O(mod 10), O≠others
Domains:
C

1000
 = {0, 1}, T={3,8}, R = {2}

F = {1,2,3,4,5,7,8,9}
W = {0,1,2,3,4}, U = {1, 3, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1

6



Example

R has smallest domain,
Pick R=2
Constraints: R≠others
Domains:
C

1000
 = {0, 1}, T={3,8},

F = {1,3,4,5,7,8,9}
W = {0,1,3,4}, U = {1, 3, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1

6
2



Example

Tie for smallest domain (T&C
1000

),
T has more connections:
Pick T=3
Constraints:  C

1000
=2T+0,

T≠others
Domains:
C

1000
 = {0},

F = {1,4,5,7,8,9}
W = {0,1,4}, U = {1, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1

6
3 2



Example

C
1000 

has smallest domain
Pick C

1000
=0

Constraints:  C
1000

=F,

Domains:
C

1000
 = {0},

F = {} ← Invalid
W = {0,1,4}, U = {1, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1

6
3 2

0



Example

Reached a dead end, so backtrack
Variables constraining
C

1000
 are T and C

100

(this is visually apparent
by the edges on the graph...
though ≠ conditions are missing)

Most recent is T, so we go there...
(When we assigned R, T’s domain was {3,8})

C
10C

100
C

1000

O
T R

F U
W

0 1

6
3

0

2



Example

Pick T=8
Constraints:  C

1000
=2T+0,

T≠others
Domains:
C

1000
 = {1},

F = {1,3,4,5,7,9}
W = {0,1,3,4}, U = {1, 3, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1

6
8 2



Example

Smallest domain is C
1000

Pick C
1000

=1
Constraints:  C

1000
=F,

Domains:
F = {1}
W = {0,1,3,4}, U = {1, 3, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1

6
8 2

1



Example

Smallest domain is F
Pick F=1
Constraints: F≠others

Domains:
W = {0,3,4}, U = {3, 5, 7, 9}

C
10C

100
C

1000

O
T R

F U
W

0 1

6
8 2

1

1



Example

Smallest domain is W
Pick W=0 from {0,3,4}
Constraints: W≠U,
U=2W+1(mod 10)
Domains:
Old U = {3, 5, 7, 9}
... U needs to be 1, which is not here so

U = {} ← Invalid 

C
10C

100
C

1000

O
T R

F U
W

0 1

6
8 2

1

1
0



Example

Pick W=3 from {0,3,4}
Constraints: W≠U,
U=2W+1(mod 10)
Domains:

Old U = {3, 5, 7, 9}
... U needs to be 7
U = {7}

C
10C

100
C

1000

O
T R

F U
W

0 1

6
8 2

1

1
3



Example

Only U left... so U=7

We found a solution:
T=8 F=1
W=3 O=6(as on left)
O=6 U=7

R=2
    TWO     836
  +TWO   +836
=FOUR =1672

C
10C

100
C

1000

O
T R

F U
W

0 1

6
8 2

1

1
3

7



Example

You try for:

S E N D
+M O R E

=M O N E Y



Complete-state CSP

So far we have been looking at incremental
search (adding one value at a time)

Complete-state searches are also possible in 
CSPs and can be quite effective

A popular method is to find the min-conflict,
where you pick a random variable and update
the choice to be one that creates the least
number of conflicts 



This works incredibly well for the n-queens
problem (partially due to dense solutions)

Complete-state CSP



As with most local searches (hill-climbing),
this method has issues with plateaus

This can be mitigated by avoiding recently
assigned variables (forces more exploration)

You can also apply weights to constraints and
update them based on how often they are
violated (to estimate which constraints are
more restrictive than others)

Complete-state CSP



Local search does not have “locally optimal”
solution our general search does

As we have a CSP, the “local optimal” may
occur, but if it is not 0 then we know we are
not satisfied (unless we searched the whole
space and find no goal)

This is almost as if we had an almost perfect
heuristic built in to the problem!

Complete-state CSP
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