Copy the file homework_week12_neural_network.zip, unzip it, and follow the instructions.
# input data X = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]])and the desired output:
# output data y = np.array([[0], [1], [1], [0]])Each input is a point in 2D. The output is the classification result we want for each point, either 0 or 1. This question uses input data for the exclusive OR.
# 2d points, 2 classes, the last value in each row of X is the bias X = np.array([[1,1,1],[1,2,1],[2,2,1],[2,3,1],[2,1,1],[3,2,1],[4,1,1],[4,2,1]]) y = np.array([[0],[0],[0],[0],[1],[1],[1],[1]])and run the program. Check that the program converges.
newX=np.array([[3,3,1],[4,3,1]])and show the output. What does the output tell you? How are the new points classified?
X = np.array([[1,1,1],[1,2,1],[2,2,1],[2,3,1],[2,1,1],[3,2,1],[3,4,1],[2,4,1],[1,3,1]]) y = np.array([[0],[0],[0],[0],[1],[1],[1],[1],[1]])Does the network converge? if you plot the points, are the classes linearly separable or not?