MATLAB(MATrix LABoratory) - MathWorks, Inc.
an interactive, matrix-based system for scientific and engineering computation

Invoking MATLAB

% matlab

to get out, type “exit”

>> exit

On-line Help

>> help

Objects in MATLAB
Matrices with integer, real, or complex entries

• scalar – 1 × 1 matrix
• vector – m × 1 matrix or 1 × m matrix
• scalar – square(n × n) or rectangular(m × n) (m, n ≥ 1)

Entering matrices

• entered by an explicit list of elements
• generated by built-in statements and functions
• created in M-files
• loaded from external data files

>> A = [1 2 3 ; 4 5 6 ; 7 8 9];

creates a 3 × 3 matrix A

• rand(n) creates a random n × n matrix

• rand(m, n) creates a random m × n matrix Any line can be continued onto the next by using “...”

>> A = [1 2 3 ; 4 5 6 ;... 7 8 9];

is the same as

>> A = [1 2 3 ; 4 5 6 ; 7 8 9];
Expressions
Expression typed by the users are interpreted and evaluated by MATLAB

\[\text{variable} = \text{expression} \]

or

\[\text{expression} \]

Variable names begin with a letter, are up to 19 characters long, and are case sensitive. Expressions are composed of operators, special characters, functions, variable names. Evaluation of expression produces a matrix, which is displayed on the screen and assigned to a variable for future use. If “variable=” is omitted, a variable “ans” is created.

\[\gg 1900/81 \]
\[\text{ans} = 23.4568 \]

A statement is terminated with the carriage return. If the last character of a statement is “;”, the printing is suppressed.

\[\gg x = 1+2+3; \]
\[\gg x = 1+2+3 \]

\[x = 6 \]

“who” lists variables in the workspace

\[\gg \text{who} \]
\[\text{ans x} \]

Arithmetic Expressions

- addition
- subtraction

* multiplication
/ right division
\ left division
^ power
’ transpose
() parentheses

Hardcopy

\[\gg \text{diary filename} \]
\[\gg \ldots \]
\[\gg \text{diary off} \]

Everything that appeared on the screen after ‘diary filename’ until ‘diary off’ is written into the file named in filename.

Graphics

Planar plots
‘plot’ creates \(x - y \) plots. If \(x \) and \(y \) are vectors of the same length, “plot(\(x,y \))” opens a graphics window and draws an \(x - y \) plot of the elements of \(x \) versus the elements of \(y \).
ex1. graph of $y=\sin(x)$ over $[-4,4]$
>> x = -4:.001:4; y = sin(x); plot(x,y)
ex2. graph of $y=\exp(-x^2)$ over $[-1.5,1.5]$
>> x = -1.5:.01:1.5; y = exp(-x.^2); plot(x,y)

Overlap of two graphs
plot two functions $\sin(x)$ and $x^2/100$ in the interval $[-15,15]$
>> x = -15:.05:15;
>> y = sin(x);
>> z = x.^2/100;
>> plot(x,y,x,z)
title - adds a title to the graph
grid - turns on the grid lines
xlabel - adds a label to x-axis
ylabel - adds a label to y-axis
>> title ('survey')
>> xlabel ('year')
>> ylabel ('income')

Creating a hardcopy of MATLAB figures(graphs)
You can generate a PostScript file of the contents of any MATLAB figure window using the `print` command. Then you can print this file on a PostScript printer to get a hardcopy.

>> print -dps filename.ps
and then at the UNIX prompt after exiting MATLAB
% lpr -Pprintname filename.ps
where printname is the name of a PostScript printer and filename is the name of the file - you must have a ``.ps'' extension on the file.

3-D mesh plots
`mesh(z)` creates a three-dimensional perspective plot of the elements of the matrix z. The mesh surface is defined by the z-coordinates of points above a rectangle rid in the $x-y$ plane. To draw a graph of $z = f(x,y)$:
1. define vectors xx and yy which give partitions of the sides of a rectangle
2. $[x,y] = \text{meshgrid}(xx,yy)$
3. compute z, and apply mesh
ex. $z=\exp(-x^2 - y^2)$ over $[-2,2] \times [-2,2]$
>> $xx = -2:.1:2$;
>> $yy = xx$;
>> $z = \exp(-x.^2 - y.^2)$
>> $[x,y] = \text{meshgrid}(xx,yy)$;
>> mesh(z)
Relations and Logical Operators

< less than > greater than
\leq \ LE. \geq \ GE.
== equal ~= not equal
\backslash end | or
\sim not

FOR
>> for i = 1:n, x(i)=i^2, end
or
>> for i=1:n
x(i)=i^2
end

WHILE
>> n = 0;
>> while 2^n < a
n = n+1;
end;
>> n

IF
>> if n < 0
x = 0;
elseif n == 0
x = 1;
else
x = 2;
end

Polynomials
MATLAB represents polynomials as row vectors containing the coefficients ordered by descending powers.

ex. \(x^3 - 6x^2 + 11x - 6\)
>> p = [1 -6 11 -6];
>> r = roots(p)
r = 3.0000
 2.0000
 1.0000

Data Analysis
generate a 1 \times n random vector \(x\)
>> x=rand(1,n)
sort the list \(x\) in increasing order
>> s=sort(x);
find the maximum value in the list \(x \)

\[\text{max_value} = \text{max}(x); \]

Find the minimum value in the list \(x \)

\[\text{min_value} = \text{min}(x); \]

sum all the elements in \(x \)

\[\text{sum_all} = \text{sum}(x); \]

calculate the mean of the list \(x \)

\[\text{mean_value} = \text{mean}(x); \]

calculate the median of the list \(x \)

\[\text{median_value} = \text{median}(x); \]

calculate the standard deviation

\[\text{std_dev} = \text{std}(x); \]

M-files

MATLAB can execute a sequence of statements stored in files, called “M-files” because they have a “.m” extension. There are two types of M-files:

1. Script files - a script file consists of a sequence of MATLAB statements. If the file name is \(file1.m \), then the MATLAB command

\[>> \text{file1} \]

will execute the statements in \(file1.m \)

2. Function files - you can create new functions. Variables in a function file are local.

ex. in file "stat.m"

```matlab
function [mean, stdev] = stat(x)
% For a vector x, stat(x) returns the mean and stdev of x
[m,n] = size(x);
mean = sum(x)/n; % compute the mean
stdev = sqrt(sum(x.^2)/n-mean^2); % compute the standard deviation

in MATLAB, typing

\[ >> [xm,xd]=\text{stat}(x) \]

will assign the mean and standard deviation of the entries in the vector \( x \) to \( xm \) and \( xd \), a \% indicates that the rest of the line is a comment.
>> help stat

For a vector \( x \), \( \text{stat}(x) \) returns the mean and stdev of \( x \)

**Entry-wise operation**

\( *, \, ^\prime, \, /, \, \$ \) can be made to operate entry-wise by preceding them by a period.

ex. \([1 \ 2 \ 3 \ 4] * [1 \ 2 \ 3 \ 4] = [1 \ 2 \ 3 \ 4] \, \cdot \, 2 = [1 \ 4 \ 9 \ 16] \)

**Flops**

\( \text{flops} \) - floating point operations, 1 flop is roughly 1 addition or 1 multiplication.
\( \text{flops}(0) \) will reset \( \text{flops} \) to 0

**Text Strings**

text strings are surrounded by single quotes

ex. \( s = 'This is a test' \)

text strings can be displayed with “disp”

>> disp(’This is a test’)