
CSci 4271W
Development of Secure Software Systems

Day 3: More Memory Safety
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Stack buffer overflow, cont’d

Reversing the stack

Reversing the stack, discussion

Other safety problems

Integer overflow example

Code auditing

Source-level view (2)

void func(char *attacker_controlled) {

char buffer[50];

strcpy(buffer, attacker_controlled);

}

Stack frame overflow

Demo break

How did the attacker know how to overwrite the
return address?

Outline

Stack buffer overflow, cont’d

Reversing the stack

Reversing the stack, discussion

Other safety problems

Integer overflow example

Code auditing

A possible solution

Part of what makes this classic attack easy is that
the array grows in the direction toward the function’s
return address

If we made the stack grow towards higher addresses
instead, this wouldn’t work in the same way

Classic puzzler: why isn’t this a solution to the
problem?

A concrete example

void func(char *attacker_controlled) {

char buffer[50];

strcpy(buffer, attacker_controlled);

}

What might happen in this example, for instance?



Outline

Stack buffer overflow, cont’d

Reversing the stack

Reversing the stack, discussion

Other safety problems

Integer overflow example

Code auditing

A solution that doesn’t help

Part of what makes this classic attack easy is that
the array grows in the direction toward the function’s
return address

If we made the stack grow towards higher addresses
instead, this wouldn’t work in the same way

Classic puzzler: why isn’t this a solution to the
problem?

A concrete example

void func(char *attacker_controlled) {

char buffer[50];

strcpy(buffer, attacker_controlled);

}

What might happen in this example, for instance?

Stack direction orientation

Higher addresses are “deeper” in the stack, and
represent older stack frames (callers) and data
(pushed first)

Lower addresses are closer to the “top” of the
stack, representing more-recently pushed frames
(callees) and data

Stack frame normal overflow Reversed overflow

Outline

Stack buffer overflow, cont’d

Reversing the stack

Reversing the stack, discussion

Other safety problems

Integer overflow example

Code auditing

Non-contiguous overflow

An overflow doesn’t have to write to the buffer in
sequence

For instance, the code might compute a single index,
and store to it



Heap buffer overflow

Overwriting a malloced buffer isn’t close to a return
address
But other targets are available:

Metadata used to manage the heap, contents of other
objects

Use after free

A common bug is to free an object via one pointer
and keep using it via another

Leads to unsafe behavior after the memory is
reused for another object

Integer overflow

Integer types have limited size, and will wrap around
if a computation is too large
Not unsafe itself, but often triggers later bugs

E.g., not allocating enough space

Function pointers, etc.

Other data used for control flow could be targeted
for overwriting by an attacker

Common C case: function pointers

More obscure C case: setjmp/longjmp buffers

Virtual dispatch

When C++ objects have virtual methods, which
implementation is called depends on the runtime
type

Under the hood, this is implemented with a table of
function pointers called a vtable

An appealing target in attacking C++ code

Non-control data overwrite

An attacker can also trigger undesired-to-you
behavior by modifying other data

For instance, flags that control other security checks

Format string injection

The first argument of printf is a little language
controlling output formatting

Best practice is for the format string to be a
constant

An attacker who controls a format string can trigger
other mischief

Outline

Stack buffer overflow, cont’d

Reversing the stack

Reversing the stack, discussion

Other safety problems

Integer overflow example

Code auditing



Integer overflow to buffer overflow

One common pattern: overflow causes an allocation
to be too small

In machine integers, multiplication doesn’t always
make a value larger

Overflow example

struct obj { short ident, x, y, z; long b; double c;};

struct obj *read_objs(int num_objs) {

unsigned int size = num_objs*(unsigned)sizeof(obj);

struct obj *objs = malloc(size);

struct obj *p = objs;

for (i = 0; i < num_objs; i++) {

fread(p, sizeof(struct obj), 1, stdin);

if (p->ident == 0x4442) return 0;

/* ... */ p++; }

return objs; }

Overflow example questions

1. What’s a value of num objs that would trigger an
overflow?

Think back to 2021 on how multiplication overflows

2. Why is the p->ident check relevant to
exploitability?

http://www-users.cselabs.umn.edu/classes/Spring-2022/

csci4271/slides/02/overflow-eg.c

Outline

Stack buffer overflow, cont’d

Reversing the stack

Reversing the stack, discussion

Other safety problems

Integer overflow example

Code auditing

Auditing is. . .

Reading code to find security bugs

Threat modeling comes first, tells you what kinds of
bugs you’re looking for

Bug fixing comes next (might be someone else’s job)

Tiers and triage

You might not have time to do a complete job, so
use auditing time strategically

Which bugs are most likely, and easiest to find?

Triage into definitely safe, definitively unsafe, hard to
tell

Hard to tell might be improved even if safe

Threat model and taint

Vulnerability depends on what an attacker might
control

Another word for attacker-controlled is “tainted”

Threat model is the best source of tainting
information

Of course, can always be conservative

Where to look for problems

If you can’t read all the code carefully, search for
indicators of common danger spots

For format strings, look for printf
For buffer overflows, look at buffers and copying functions



Ideal: proof

Given enough time, for each dangerous spot, be able
to convince someone:

Proof of safety: reasons why a bug could never happen,
could turn into assertions
Proof of vulnerability: example of tainted input that
causes a crash


