CSci 427\W
Development of Secure Software Systems
Day 6: Memory safety attacks 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Shellcode techniques

Basic definition

©) Shellcode: attacker supplied instructions
implementing malicious functionality

£) Name comes from example of starting a shell
) Often requires attention to machine-language
encoding

Classic execve /bin/sh

€) execve(fname, argv, envp) System call
©) Specialized syscall calling conventions

£) Omit unneeded arguments

£) Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

£) Common requirement for shellcode in C string
£) Analogy: broken O key on keyboard
£) May occur in other parts of encoding as well

Outline

Examples in GDB

Demo

©) Overwriting the return address
©) Jumping to shellcode

Outline

Exploiting other vulnerabilities

Non-control data overwrite

£) Overwrite other security-sensitive data
©) No change to program control flow
£) Set user ID to O, set permissions to all, etc.

Heap meta-data

£) Boundary tags similar to doubly-linked list
£) Overwritten on heap overflow

©) Arbitrary write triggered on free

£) Simple version stopped by sanity checks

Heap meta-data

future|growth
the
"break"

area

[|
I] Unallocated
[]

|

———
[Free]T 11 1| Medium objects

T [T Fee | W/ boundary tags

1]| Small objects
[T []|bucketed by size

Use after free

£) Write to new object overwrites old, or vice-versa
£) Key issue is what heap object is reused for
£ Influence by controlling other heap operations

Integer overflows

©) Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
£) 2GB write in 100 byte buffer
® Find some other way to make it stop
©) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

£) Add offset to make a predictable pointer
® On Windows, interesting address start low
£) Allocate data on the zero page

® Most common in user-space to kernel attacks
® Read more dangerous than a write

Format string attack

) Attacker-controlled format: little interpreter

©) Step one: add extra integer specifiers, dump stack
® Already useful for information disclosure

Format string attack layout

caller frame

printf frame

copy of
Yorex

copy of
Yrdx argument

pointer

copy of
%rsi

copy F)f %X %X %X %X %X
%rdi

Format string attack layout

caller frame

printf frame

copy of
Yorcx

copy of

%rdx \argument

pointer

copy of
%rsi

copy f)f %X %X %X %X %X
%rdi

Format string attack: overwrite

£) %n specifier: store number of chars written so far to
pointer arg

£) Advance format arg pointer to other
attacker-controlled data

£) Control number of chars written with padding

£) On x86, can use unaligned stores to create pointer

Outline

WaX (DEP)

Basic idea

©) Traditional shellcode must go in a memory area that
is
® writable, so the shellcode can be inserted
® executable, so the shellcode can be executed

) But benign code usually does not need this
combination
o W xor X, really =(W A X)

Non-writable code, X — —W

©) Eg., read-only text section
£) Has been standard for a while, especially on Unix

£) Lets OS efficiently share code with multiple program
instances

Non-executable data, W — —X

©) Prohibit execution of static data, stack, heap

£) Not a problem for most programs
® Incompatible with some GCC features no one uses
= Non-executable stack opt-in on Linux, but now
near-universal

Implementing W & X

£) Page protection implemented by CPU

® Some architectures (e.g. SPARC) long supported W @ X
£) x86 historically did not

® One bit controls both read and execute

® Partial stop-gap “code segment limit"
©) Eventual obvious solution: add new bit

® NX (AMD), XD (Intel), XN (ARM)

One important exception

£) Remaining important use of self-modifying code:
just-in-time (JIT) compilers
® Eg, all modern JavaScript engines
£) Allow code to re-enable execution per-block

® mprotect, VirtualProtect
® Now a favorite target of attackers

Counterattack: code reuse

£) Attacker can't execute new code

£ So, take advantage of instructions already in binary
£) There are usually a lot of them

©) And no need to obey original structure

Classic return-to-libc (1997)

£) Overwrite stack with copies of:

® Pointer to libc’s system function
® Pointer to "/bin/sh" string (also in libc)

£) The system function is especially convenient
£) Distinctive feature: return to entry point

Chained return-to-libc

©) Shellcode often wants a sequence of actions, e.q.
® Restore privileges
® Allow execution of memory area
® Overwrite system file, etc.
©) Can put multiple fake frames on the stack
® Basic idea present in 1997, further refinements

Pop culture analogy: ransom note trope

come | [at midnight]. [ring |

