
CSci 4271W
Development of Secure Software Systems

Day 6: Memory safety attacks 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Shellcode techniques

Examples in GDB

Exploiting other vulnerabilities

W�X (DEP)

Basic definition

Shellcode: attacker supplied instructions
implementing malicious functionality

Name comes from example of starting a shell

Often requires attention to machine-language
encoding

Classic execve /bin/sh

execve(fname, argv, envp) system call

Specialized syscall calling conventions

Omit unneeded arguments

Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

Common requirement for shellcode in C string

Analogy: broken 0 key on keyboard

May occur in other parts of encoding as well

Outline

Shellcode techniques

Examples in GDB

Exploiting other vulnerabilities

W�X (DEP)

Demo

Overwriting the return address

Jumping to shellcode

Outline

Shellcode techniques

Examples in GDB

Exploiting other vulnerabilities

W�X (DEP)



Non-control data overwrite

Overwrite other security-sensitive data

No change to program control flow

Set user ID to 0, set permissions to all, etc.

Heap meta-data

Boundary tags similar to doubly-linked list

Overwritten on heap overflow

Arbitrary write triggered on free

Simple version stopped by sanity checks

Heap meta-data Use after free

Write to new object overwrites old, or vice-versa

Key issue is what heap object is reused for

Influence by controlling other heap operations

Integer overflows

Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
2GB write in 100 byte buffer

Find some other way to make it stop

Arbitrary single overwrite
Use math to figure out overflowing value

Null pointer dereference

Add offset to make a predictable pointer
On Windows, interesting address start low

Allocate data on the zero page
Most common in user-space to kernel attacks
Read more dangerous than a write

Format string attack

Attacker-controlled format: little interpreter

Step one: add extra integer specifiers, dump stack
Already useful for information disclosure

Format string attack layout



Format string attack layout Format string attack: overwrite

%n specifier: store number of chars written so far to
pointer arg

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with padding

On x86, can use unaligned stores to create pointer

Outline

Shellcode techniques

Examples in GDB

Exploiting other vulnerabilities

W�X (DEP)

Basic idea

Traditional shellcode must go in a memory area that
is

writable, so the shellcode can be inserted
executable, so the shellcode can be executed

But benign code usually does not need this
combination

W xor X, really :(W ^ X)

Non-writable code, X! :W

E.g., read-only .text section

Has been standard for a while, especially on Unix

Lets OS efficiently share code with multiple program
instances

Non-executable data, W ! :X

Prohibit execution of static data, stack, heap

Not a problem for most programs
Incompatible with some GCC features no one uses
Non-executable stack opt-in on Linux, but now
near-universal

Implementing W � X

Page protection implemented by CPU
Some architectures (e.g. SPARC) long supported W � X

x86 historically did not
One bit controls both read and execute
Partial stop-gap “code segment limit”

Eventual obvious solution: add new bit
NX (AMD), XD (Intel), XN (ARM)

One important exception

Remaining important use of self-modifying code:
just-in-time (JIT) compilers

E.g., all modern JavaScript engines

Allow code to re-enable execution per-block
mprotect, VirtualProtect
Now a favorite target of attackers



Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of actions, e.g.
Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the stack
Basic idea present in 1997, further refinements

Pop culture analogy: ransom note trope


