
CSci 4271W
Development of Secure Software Systems

Day 8: ROP and More Threat Modeling
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Return-oriented programming (ROP), cont’d

ROP shellcoding exercise

More perspectives on threat modeling

Attacks and shellcode lab followup

Pop culture analogy: ransom note trope Basic new idea

Treat the stack like a new instruction set

“Opcodes” are pointers to existing code

Generalizes return-to-libc with more programmability

Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

Gadgets

Basic code unit in ROP

Any existing instruction sequence that ends in a
return

Found by (possibly automated) search

Another partial example

Overlapping x86 instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Variable length instructions can start at any byte

Usually only one intended stream

Where gadgets come from

Possibilities:
Entirely intended instructions
Entirely unaligned bytes
Fall through from unaligned to intended

Standard x86 return is only one byte, 0xc3

Building instructions

String together gadgets into manageable units of
functionality
Examples:

Loads and stores
Arithmetic
Unconditional jumps

Must work around limitations of available gadgets

Hardest case: conditional branch

Existing jCC instructions not useful

But carry flag CF is

Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

Can also use other indirect jumps, overlapping not
required

Automation in gadget finding and compilers

In practice: minimal ROP code to allow transfer to
other shellcode

Outline

Return-oriented programming (ROP), cont’d

ROP shellcoding exercise

More perspectives on threat modeling

Attacks and shellcode lab followup

Setup

Key motivation for ROP is to disable W � X

Can be done with a single syscall, similar to execve

shellcode

Your exercise for today: put together such shellcode
from a limited gadget set

Puzzle/planning aspect: order to avoid overwriting

Outline

Return-oriented programming (ROP), cont’d

ROP shellcoding exercise

More perspectives on threat modeling

Attacks and shellcode lab followup

Software-oriented modeling

This is what we’ve concentrated on until now
And it will still be the biggest focus

Think about attacks based on where they show up in
the software

Benefit: easy to connect to software-level
mitigations and fixes

Asset-oriented modeling

Think about threats based on what assets are
targeted / must be protected
Useful from two perspectives:

Predict attacker behavior based on goals
Prioritize defense based on potential losses

Can put other modeling in context, but doesn’t
directly give you threats

Kinds of assets

Three overlapping categories:
Things attackers want for themselves
Things you want to protect
Stepping stones to the above

Attacker-oriented modeling

Think about threats based on the attacker carrying
them out

Predict attacker behavior based on characteristics
Prioritize defense based on likelihood of attack

Limitation: it can be hard to understand attacker
motivations and strategies

Be careful about negative claims

Kinds of attackers (Intel TARA)

Competitor

Data miner

Radical activist

Cyber vandal

Sensationalist

Civil activist

Terrorist

Anarchist

Irrational individual

Gov’t cyber warrior

Corrupt gov’t official

Legal adversary

Kinds of attackers (cont’d)

Internal spy

Government spy

Thief

Vendor

Reckless employee

Information partner

Disgruntled employee

Outline

Return-oriented programming (ROP), cont’d

ROP shellcoding exercise

More perspectives on threat modeling

Attacks and shellcode lab followup

Reminder: what is shellcode

Machine code that does the attacker’s desired
behavior

Just a few instructions, not a complete program

Usually represented as sequence of bytes in hex

Reminder: basic attack sequence

Make the program do an unsafe memory operation

Use control to manipulate contol-flow choice
E.g.: return address, function pointer

Make the target of control be shellcode

Overflow example hands-on

Steps of overflow-from-file example

Side-effects example

A second example with a new wrinkle

