
CSci 4271W
Development of Secure Software Systems
Day 15: Race Conditions and OS Protection

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Shell code injection and related threats, cont’d

Race conditions and related threats

Project 1 expectations

Secure OS interaction

OS: protection and isolation

More choices for isolation

Shell code injection

The command shell is convenient to use, especially
in scripts

In C: system, popen

But it is bad to expose the shell’s power to an
attacker

Key pitfall: assembling shell commands as strings

Shell code injection example

Benign: system("cp $arg1 $arg2"), arg1 =
"file1.txt"

Attack: arg1 = "a b; echo Gotcha"

Command: "cp a b; echo Gotcha file2.txt"

Different shells and multiple interpretation

Complex Unix systems include shells at multiple
levels, making these issues more complex

Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

Other shell-like programs also have caveats with
levels of interpretation

Tcl before version 9 interpreted leading zeros as octal

Related local dangers

File names might contain any character except / or
the null character

The PATH environment variable is user-controllable,
so cp may not be the program you expect

Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem
In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable

Exploit system("/bin/uname")

In modern shells, improved by not taking from
environment

Outline

Shell code injection and related threats, cont’d

Race conditions and related threats

Project 1 expectations

Secure OS interaction

OS: protection and isolation

More choices for isolation

Bad/missing error handling

Under what circumstances could each system call
fail?

Careful about rolling back after an error in the middle
of a complex operation

Fail to drop privileges) run untrusted code anyway

Update file when disk full) truncate

Race conditions

Two actions in parallel; result depends on which
happens first

Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

Many other examples

Classic races: files in /tmp

Temp filenames must already be unique

But “unguessable” is a stronger requirement

Unsafe design (mktemp(3)): function to return
unused name

Must use O EXCL for real atomicity

TOCTTOU gaps

Time-of-check (to) time-of-use races
1. Check it’s OK to write to file
2. Write to file

Attacker changes the file between steps 1 and 2

Just get lucky, or use tricks to slow you down

Read It Twice (WOOT’12)

Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

Malicious USB device replaces app between steps

TV “rooted”/“jailbroken”

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1;

struct stat s;

stat(path, &s)

if (!S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

Changing file references

With symbolic links

With hard links

With changing parent directories

Directory traversal with ..

Program argument specifies file, found in directory
files

What about files/../../../../etc/passwd?

Outline

Shell code injection and related threats, cont’d

Race conditions and related threats

Project 1 expectations

Secure OS interaction

OS: protection and isolation

More choices for isolation

Report overall length

4-5 pages in US Letter (8.5 x 11in), 1 inch margins

Double-spaced 10 point Times, Times Roman, or
Computer Modern Roman

Figures, code examples, etc., go at the end, don’t
count in the 4-5 pages.

Will submit online as PDF

Threat modeling

You should include at least one data-flow diagram

The diagram should have enough detail to inform
your threat modeling

E.g., bcimgview should not be a single component

Threats should include, but are not limited to, the
ones you’ll address in the auditing

Auditing for vulnerabilities

There are at least four bugs that are definitively
problematic

You need to identify at least three

Good to also include:
Dangerous locations that are not vulnerable in the current
program
Dangerous locations that you’re not sure if they can be
attacked

Attacks

Include three for full credit, you should be sure they
work

Include enough detail to convince me that you really
did make the attack work

For attack inputs, consider showing figure of hex
dump with relevant parts highlighted

Rules reminders

This is an individual assignment, not collaborative
Non-spoiler Piazza or office-hour discussions are OK

The writing should be entirely your own

Use of public, non-class materials is allowed, but
should be acknowledged

No specific requirement for citation format for this project

Schedule

First report, covering modeling, auditing, and attacks,
due Friday March 25th

Revised report with bug fixed due Friday April 8th

Outline

Shell code injection and related threats, cont’d

Race conditions and related threats

Project 1 expectations

Secure OS interaction

OS: protection and isolation

More choices for isolation

Avoid special privileges

Require users to have appropriate permissions
Rather than putting trust in programs

Dangerous pattern 1: setuid/setgid program

Dangerous pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

Prefer file descriptors

Maintain references to files by keeping them open
and using file descriptors, rather than by name

References same contents despite file system
changes

Use openat, etc., variants to use FD instead of
directory paths

Prefer absolute paths

Use full paths (starting with /) for programs and files

$PATH under local user control

Initial working directory under local user control
But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

Each directory component in a path must be write
protected

Read-only file in read-only directory can be changed
if a parent directory is modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight permissions and
never reopen them

See detailed recommendations in Wheeler (q.v.)

Not quite good enough: reopen and check matching
device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of set*id functions
Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid Demystified
(USENIX’02)

Allow-list environment variables

Can change the behavior of called program in
unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

For more details. . .

The first external reading is chapters from a
web-hosted book by David A. Wheeler

Reading questions will be due one week after they
are posted on Canvas

Outline

Shell code injection and related threats, cont’d

Race conditions and related threats

Project 1 expectations

Secure OS interaction

OS: protection and isolation

More choices for isolation

OS security topics

Resource protection

Process isolation

User authentication (will cover later)

Access control (already covered)

Protection and isolation

Resource protection: prevent processes from
accessing hardware

Process isolation: prevent processes from interfering
with each other

Design: by default processes can do neither

Must request access from operating system

Reference monitor

Complete mediation: all accesses are checked

Tamperproof: the monitor is itself protected from
modification

Small enough to be thoroughly verified

Hardware basis: memory protection

Historic: segments

Modern: paging and page protection
Memory divided into pages (e.g. 4k)
Every process has own virtual to physical page table
Pages also have R/W/X permissions

Linux example Hardware basis: supervisor bit

Supervisor (kernel) mode: all instructions available

User mode: no hardware or VM control instructions

Only way to switch to kernel mode is specified entry
point

Also generalizes to multiple “rings”

Outline

Shell code injection and related threats, cont’d

Race conditions and related threats

Project 1 expectations

Secure OS interaction

OS: protection and isolation

More choices for isolation

Ideal: least privilege

Programs and users should have the most limited
set of powers needed to do their job
Presupposes that privileges are suitably divisible

Contrast: Unix root

“Trusted”, TCB

In security, “trusted” is a bad word

X is trusted: X can break your security

“Untrusted” = okay if it’s evil

Trusted Computing Base (TCB): minimize

Restricted languages

Main application: code provided by untrusted parties

Packet filters in the kernel

JavaScript in web browsers
Also Java, Flash ActionScript, etc.

SFI

Software-based Fault Isolation

Instruction-level rewriting
Analogous to but predates control-flow integrity

Limit memory stores and sometimes loads

Can’t jump out except to designated points

E.g., Google Native Client

Separate processes

OS (and hardware) isolate one process from another

Pay overhead for creation and communication

System call interface allows many possibilities for
mischief

System-call interposition

Trusted process examines syscalls made by
untrusted

Implement via ptrace (like strace, gdb) or via kernel
change

Easy policy: deny

Interposition challenges

Argument values can change in memory (TOCTTOU)

OS objects can change (TOCTTOU)

How to get canonical object identifiers?

Interposer must accurately model kernel behavior

Details: Garfinkel (NDSS’03)

Separate users

Reuse OS facilities for access control

Unit of trust: program or application

Older example: qmail

Newer example: Android

Limitation: lots of things available to any user

chroot

Unix system call to change root directory

Restrict/virtualize file system access

Only available to root

Does not isolate other namespaces

OS-enabled containers

One kernel, but virtualizes all namespaces

FreeBSD jails, Linux LXC, Solaris zones, etc.

Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

Presents hardware-like interface to an untrusted
kernel

Strong isolation, full administrative complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’ underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

