
CSci 4271W
Development of Secure Software Systems

Day 22: Public-key Cryptography and Networking
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question

Which of the following would have to be completely abandoned if

scalable quantum computers become widely available?

A. one-time pads

B. RSA

C. AES

D. ROT13

E. SHA-3

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Pre-history of public-key crypto

First invented in secret at GCHQ

Proposed by Ralph Merkle for UC Berkeley grad.
security class project

First attempt only barely practical
Professor didn’t like it

Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

Alice wants to send Bob a gift in a locked box
They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by Bob, or
vice-versa

Box and locks analogy

Alice wants to send Bob a gift in a locked box
They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by Bob, or
vice-versa

Math perspective: physical locks commute

Protocol with clip art Protocol with clip art



Protocol with clip art Protocol with clip art

Public key primitives

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

Fix modulus n, keep only remainders mod n
mod 12: clock face; mod 2

32: unsigned int

+, -, and � work mostly the same

Division? Multiplicative inverse by extended GCD

Exponentiation: efficient by square and multiply

Generators and discrete log

Modulo a prime p, non-zero values and � have a
nice (“group”) structure

g is a generator if g0; g; g2; g3; : : : cover all
elements

Easy to compute x 7! gx

Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

Goal: anonymous key exchange

Public parameters p, g; Alice and Bob have resp.
secrets a, b

Alice!Bob: A = ga (mod p)

Bob!Alice: B = gb (mod p)

Alice computes Ba = gba = k

Bob computes Ab = gab = k

Relationship to a hard problem

We’re not sure discrete log is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If discrete log is easy (e.g., in P), DH is insecure

Converse might not be true: DH might have other
problems

Categorizing assumptions

Math assumptions unavoidable, but can categorize

E.g., build more complex scheme, shows it’s “as
secure” as DH because it has the same underlying
assumption

Commonly “decisional” (DDH) and “computational”
(CDH) variants



Key size, elliptic curves

Need key sizes �10 times larger then security level
Attacks shown up to about 768 bits

Elliptic curves: objects from higher math with
analogous group structure

(Only tenuously connected to ellipses)

Elliptic curve algorithms have smaller keys, about 2�
security level

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

General description

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)

RSA setup

Choose n = pq, product of two large primes, as
modulus

n is public, but p and q are secret

Compute encryption and decryption exponents e
and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Private key is (n; d)

Decryption of C is Cd =Med =M (mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M (mod n)

Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

We’re not sure factoring is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If factoring is easy (e.g., in P), RSA is insecure

Converse might not be true: RSA might have other
problems

Homomorphism

Multiply RSA ciphertexts ) multiply plaintexts

This homomorphism is useful for some interesting
applications
Even more powerful: fully homomorphic encryption
(e.g., both + and �)

First demonstrated in 2009; still challenging



Problems with vanilla RSA

Homomorphism leads to chosen-ciphertext attacks

If message and e are both small compared to n, can
compute M1=e over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES key) size to
match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01 FF FF .. FF

Surprising discovery (Bleichenbacher’98): allows
adaptive chosen ciphertext attacks on SSL

Variants recurred later (c.f. “ROBOT” 2018)

Modern “padding”

Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

Common examples: OAEP for encryption, PSS for
signing

Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto used for
symmetric-key setup

Also applies to DH

Choose RSA message r at random mod n,
symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

One thing quantum computers would be good for is
breaking crypto
Square root speedup of general search

Countermeasure: double symmetric security level

Factoring and discrete log become poly-time
DH, RSA, DSA, elliptic curves totally broken
Totally new primitives needed (lattices, etc.)

Not a problem yet, but getting ready

Box and locks revisited

Alice and Bob’s box scheme fails if an intermediary
can set up two sets of boxes

Middleperson (man-in-the-middle) attack

Real world analogue: challenges of protocol design
and public key distribution

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks



Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

The Internet

A bunch of computer networks voluntarily
interconnected

Capitalized because there’s really only one

No centralized network-level management
But technical collaboration, DNS, etc.

Layered model (OSI)

7. Application (HTTP)

6. Presentation (MIME?)

5. Session (SSL?)

4. Transport (TCP)

3. Network (IP)

2. Data-link (PPP)

1. Physical (10BASE-T)

Layered model: TCP/IP Packet wrapping

IP(v4) addressing

Interfaces (hosts or routers) identified by 32-bit
addresses

Written as four decimal bytes, e.g. 192.168.10.2

First k bits identify network, 32- k host within
network

Can’t (anymore) tell k from the bits

We’ll run out any year now

IP and ICMP

Internet Protocol (IP) forwards individual packets

Packets have source and destination addresses,
other options

Automatic fragmentation (usually avoided)

ICMP (I Control Message P) adds errors, ping
packets, etc.



UDP

User Datagram Protocol: thin wrapper around IP

Adds source and destination port numbers (each
16-bit)

Still connectionless, unreliable

OK for some small messages

TCP

Transmission Control Protocol: provides reliable
bidirectional stream abstraction

Packets have sequence numbers, acknowledged in
order

Missed packets resent later

Flow and congestion control

Flow control: match speed to slowest link
“Window” limits number of packets sent but not ACKed

Congestion control: avoid traffic jams
Lost packets signal congestion
Additive increase, multiplicative decrease of rate

Routing

Where do I send this packet next?
Table from address ranges to next hops

Core Internet routers need big tables

Maintained by complex, insecure, cooperative
protocols

Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

Address Resolution Protocol maps IP addresses to
lower-level address

E.g., 48-bit Ethernet MAC address

Based on local-network broadcast packets

Complex Ethernets also need their own routing (but
called switches)

DNS

Domain Name System: map more memorable and
stable string names to IP addresses
Hierarchically administered namespace

Like Unix paths, but backwards

.edu server delegates to .umn.edu server, etc.

DNS caching and reverse DNS

To be practical, DNS requires caching
Of positive and negative results

But, cache lifetime limited for freshness

Also, reverse IP to name mapping
Based on special top-level domain, IP address written
backwards

Classic application: remote login

Killer app of early Internet: access supercomputers
at another university
Telnet: works cross-OS

Send character stream, run regular login program

rlogin: BSD Unix
Can authenticate based on trusting computer connection
comes from
(Also rsh, rcp)



Outline

Public-key crypto basics

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Packet sniffing

Watch other people’s traffic as it goes by on network

Easiest on:
Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in routing, often not
checked

Change it to something else!

Might already be enough to fool a naive UDP
protocol

TCP spoofing

Forging source address only lets you talk, not listen

Old attack: wait until connection established, then
DoS one participant and send packets in their place
Frustrated by making TCP initial sequence numbers
unpredictable

Fancier attacks modern attacks are “off-path”

ARP spoofing

Impersonate other hosts on local network level

Typical ARP implementations stateless, don’t mind
changes

Now you get victim’s traffic, can read, modify, resend

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

Remember, ownership of reverse-DNS is by IP
address


