
CSci 4271W
Development of Secure Software Systems
Day 27: Authentication and Security Testing

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Web authentication

Announcements intermission

Names and identities

ROC curve exercise

Testing and fuzzing

Per-website authentication

Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls

Building a session

HTTP was originally stateless, but many sites want
stateful login sessions

Built by tying requests together with a shared
session ID

Must protect confidentiality and integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be unforgeable
E.g., data with properly used MAC
Negative example: crypt(username k server secret)

Session ID: where

Session IDs in URLs are prone to leaking
Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only under HTTPS

Because of CSRF, should also have a non-cookie
unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log out from public
browsers

Account management

Limitations on account creation
CAPTCHA? Outside email address?

See previous discussion on hashed password
storage
Automated password recovery

Usually a weak spot
But, practically required for large system

Client and server checks

For usability, interface should show what’s possible

But must not rely on client to perform checks

Attackers can read/modify anything on the client
side

Easy example: item price in hidden field

Direct object references

Seems convenient: query parameter names
resource directly

E.g., database key, filename (path traversal)

Easy to forget to validate on each use

Alternative: indirect reference like per-session table
Not fundamentally more secure, but harder to forget
check

Function-level access control

E.g. pages accessed by URLs or interface buttons

Must check each time that user is authorized
Attack: find URL when authorized, reuse when logged off

Helped by consistent structure in code

Outline

Web authentication

Announcements intermission

Names and identities

ROC curve exercise

Testing and fuzzing

Midterm 2 statistics

<=4 | *

5 | 056666

6 | 2345667888

7 | 00012368899

8 | 00344444466667799

9 | 02344666789

10 | 00

Mean 75.7, median 79, difficulty adjustment +5

SRT logistics

All online this semester
Open through the last regular class day (next Monday)

Requested but not required; won’t affect your grade
one way or the other

Primary evaluation combines Prof. McCamant and
the course

Please also evaluate Aditya separately if you have
comments or suggestions about his performance

SRT URL

https://srt.umn.edu/blue

We’ll take a 15-minute break in class material that
we request you use for filling out the evaluation

Outline

Web authentication

Announcements intermission

Names and identities

ROC curve exercise

Testing and fuzzing

Accounts versus identities

“Identity” is a broad term that can refer to a
personal conception or an automated sytem

“Name” is also ambiguous in this way

“Account” and “authentication” refer unambiguously
to institutional/computer abstractions

Any account system is only an approximation of the
real world

Real human names are messy

Most assumptions your code might make will fail for
someone

ASCII, length limit, uniqueness, unchanging, etc.

So, don’t design in assumptions about real names

Use something more computer-friendly as the core
identifier

Make “real” names or nicknames a presentation aspect

Zooko’s triangle

Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:

Human-meaningful
Secure
Decentralized

Too imprecise to be definitively proven/refuted
Blockchain-based name systems are highest-profile
claimed counterexamples

A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

“Send us a scan of your driver’s license”
Sometimes called for by specific regulations
Unnecessary storage is a disclosure risk
Fake IDs are very common

Identity numbers: mostly unhelpful

Common US example: social security number

Variously used as an identifier or an authenticator
Dual use is itself a cause for concern

Known by many third parties (e.g., banks)

No checksum, guessing risks

Published soon after a person dies

“Identity theft”
The first-order crime is impersonation fraud between
two other parties

E.g., criminal trying to get money from a bank under false
pretenses

The impersonated “victim” is effectively victimized by
follow-on false statements

E.g., by credit reporting agencies
These costs are arguably the result of poor regulatory
choices

Be careful w/ negative info from 3rd parties

Outline

Web authentication

Announcements intermission

Names and identities

ROC curve exercise

Testing and fuzzing

Error rates: ROC curve

Extreme biometrics examples

exact iris code match: very low false positive
(false authentication)

similar voice pitch: very low false negative
(false reject)

Where are these in ROC space?

A if (iris()) return REJECT; else return ACCEPT;

B return REJECT;

C if (iris()) return ACCEPT; else return REJECT;

D if (iris() && pitch()) return ACCEPT; else return REJECT;

E return ACCEPT;

F if (rand() & 1) return ACCEPT; else return REJECT;

G if (pitch()) return ACCEPT; else return REJECT;

H if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Web authentication

Announcements intermission

Names and identities

ROC curve exercise

Testing and fuzzing

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Random or fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Mutational fuzzing

Instead of totally random inputs, make small random
changes to normal inputs

Changes are called mutations

Benign starting inputs are called seeds

Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

Observation: it helps to know what correct inputs
look like

Grammar specifies legal patterns, run backwards
with random choices to generate

Generated inputs can again be basis for mutation

Most commonly used for standard input formats
Network protocols, JavaScript, etc.

What if you don’t have a grammar?

Input format may be unknown, or buggy and limited

Writing a grammar may be too much manual work

Can the structure or interesting inputs be figured out
automatically?

Coverage-driven fuzzing

Instrument code to record what code is executed

An input is interesting if it executes code that was
not executed before

Only interesting inputs are used as basis for future
mutation

AFL

Best known open-source tool, pioneered
coverage-driven fuzzing

American Fuzzy Lop, a breed of rabbits

Stores coverage information in a compact hash table

Compiler-based or binary-level instrumentation

Has a number of other optimizations

