CSci 427\W
Development of Secure Software Systems
Day 27: Authentication and Security Testing

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Web authentication

Per-website authentication

©) Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
— Inconvenient, many will reuse passwords
Lots of functionality each site must implement correctly
— Without enough framework support, many possible pitfalls

Building a session

©) HTTP was originally stateless, but many sites want
stateful login sessions

£) Built by tying requests together with a shared
session ID

£) Must protect confidentiality and integrity

Session ID: what

£) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® Eg, limited validity window
o) If encoding data in ID, must be unforgeable

® E.g, data with properly used MAC
® Negative example: crypt(username || server secret)

Session ID: where

£) Session IDs in URLs are prone to leaking
® Including via user cut-and-paste
£) Usual choice: non-persistent cookie
® Against network attacker, must send only under HTTPS
) Because of CSRF, should also have a non-cookie
unique ID

Session management

) Create new session ID on each login
©) Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
® Needed to protect users who fail to log out from public
browsers

Account management

©) Limitations on account creation
® CAPTCHA? Outside email address?
£) See previous discussion on hashed password
storage
£) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

) For usability, interface should show what's possible

©) But must not rely on client to perform checks

£) Attackers can read/modify anything on the client
side

©) Easy example: item price in hidden field

Direct object references

£) Seems convenient: query parameter names
resource directly
® Eg, database key, filename (path traversal)
£) Easy to forget to validate on each use

£) Alternative: indirect reference like per-session table

® Not fundamentally more secure, but harder to forget
check

Function-level access control

©) Eg9. pages accessed by URLs or interface buttons

) Must check each time that user is authorized
® Attack: find URL when authorized, reuse when logged off

©) Helped by consistent structure in code

Outline

Announcements intermission

Midterm 2 statistics

| *

| 056666

| 2345667888

| 00012368899

| 00344444466667799
| 02344666789

| 00

O © 00N O O

1

Mean 757, median 79, difficulty adjustment +5

SRT logistics

©) All online this semester
® Open through the last regular class day (next Monday)

£) Requested but not required; won't affect your grade
one way or the other

£) Primary evaluation combines Prof. McCamant and
the course

£) Please also evaluate Aditya separately if you have
comments or suggestions about his performance

SRT URL

O https://srt.umn.edu/blue
©) We'll take a 15-minute break in class material that
we request you use for filling out the evaluation

Outline

Names and identities

Accounts versus identities

) "ldentity” is a broad term that can refer to a
personal conception or an automated sytem

£) "Name” is also ambiguous in this way

£) “Account” and “authentication” refer unambiguously
to institutional/computer abstractions

©) Any account system is only an approximation of the
real world

Real human names are messy

£) Most assumptions your code might make will fail for
someone
® ASCI, length limit, uniqueness, unchanging, etc.

£) So, don't design in assumptions about real names
£) Use something more computer-friendly as the core
identifier
® Make “real” names or nicknames a presentation aspect

Zooko's triangle

©) Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:
® Human-meaningful
® Secure
® Decentralized
£) Too imprecise to be definitively proven/refuted
® Blockchain-based name systems are highest-profile
claimed counterexamples

©) A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

£) "Send us a scan of your driver's license”
® Sometimes called for by specific regulations
® Unnecessary storage is a disclosure risk
® Fake IDs are very common

Identity numbers: mostly unhelpful

£) Common US example: social security number

) Variously used as an identifier or an authenticator
® Dual use is itself a cause for concern

©) Known by many third parties (e.g., banks)
©) No checksum, guessing risks
©) Published soon after a person dies

“Identity theft”

£) The first-order crime is impersonation fraud between
two other parties
® E.g, criminal trying to get money from a bank under false
pretenses
£) The impersonated “victim” is effectively victimized by
follow-on false statements
® Eg, by credit reporting agencies
® These costs are arguably the result of poor regulatory
choices

£) Be careful w/ negative info from 3rd parties

Outline

ROC curve exercise

Error rates: ROC curve

Aways
Perfect accept
100% —
e
P
2 eer ©
75% /(20% FP.
20% FN
&

1

s0%| oFiip
air

True positive rate

% 25% 50% 75% 100%
False positive rate

Extreme biometrics examples

£) exact_iris _code match: very low false positive
(false authentication)

0 similar voice pitch: very low false negative
(false reject)

Where are these in ROC space?

if (iris()) return REJECT; else return ACCEPT;

return REJECT;

if (iris()) return ACCEPT; else return REJECT;

if (iris() && pitch()) return ACCEPT; else return REJECT;
return ACCEPT;

if (rand() & 1) return ACCEPT; else return REJECT;

if (pitch()) return ACCEPT; else return REJECT;

I @ m m O O W >

if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Testing and fuzzing

Testing and security

£) “Testing shows the presence, not the absence of
bugs” - Dijkstra
£) Easy versions of some bugs can be found by

targeted tests:
® Buffer overflows: long strings
® Integer overflows: large numbers
® Format string vulnerabilities: %x

Random or fuzz testing

©) Random testing can also sometimes reveal bugs
©) Original ‘fuzz’ (Miller): program </dev/urandom
©) Even this was surprisingly effective

Mutational fuzzing

£) Instead of totally random inputs, make small random
changes to normal inputs

£) Changes are called mutations
£) Benign starting inputs are called seeds

£) Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

) Observation: it helps to know what correct inputs
look like

©) Grammar specifies legal patterns, run backwards
with random choices to generate

£) Generated inputs can again be basis for mutation

£) Most commonly used for standard input formats
® Network protocols, JavaScript, etc.

What if you don't have a grammar?

£ Input format may be unknown, or buggy and limited
£) Writing a grammar may be too much manual work

£) Can the structure or interesting inputs be figured out
automatically?

Coverage-driven fuzzing

©) Instrument code to record what code is executed

©) An input is interesting if it executes code that was
not executed before
©) Only interesting inputs are used as basis for future

mutation

AFL

£) Best known open-source tool, pioneered
coverage-driven fuzzing

©) American Fuzzy Lop, a breed of rabbits

) Stores coverage information in a compact hash table
) Compiler-based or binary-level instrumentation

) Has a number of other optimizations

