Protecting database privacy
- Can we protect sensitive collected information to allow statistics
 - By transforming data, and/or restricting queries
- A weakness of many early attempts was breaking depending on extra information an attacker might have

Centralized differential privacy
- If the result of an aggregation would be the same without my input, it can’t be hurting my privacy
- Can’t make it exactly the same, but ensure it’s similar by adding randomness
 \[P[A(V) \in R] \leq e^\varepsilon P[A(V') \in R] \]

Laplace mechanism
- Distribution of adding Laplacian noise:
 - 20 + noise, 40 + noise

Epsilon and delta
- The parameter \(\varepsilon \) represents a privacy budget
 - Often little specific guidance on choosing it
 - In an interactive system, it can run out
- \((\varepsilon, \delta)\) differential privacy also allows a possibility of complete failure

Local differential privacy
- If no trusted third party, data owners must each add their own noise
- Allows more applications, but has a worse privacy/utility tradeoff

Randomized response intuition
- Earlier proposed for embarrassing survey questions
- Randomly choose to answer either randomly or honestly
- The effect of the random answers can be removed after aggregation
- But no one can tell for sure about any particular response

Permanent response
- Repeatedly adding different noise to the same honest value would give it away
- So, add one level of noise permanently, and save the result
- Still not enough to protect “what is your age in days today?”
Instantaneous response

- A second layer of randomization makes each repeated response different
 - Avoid tracking, and more protection against a weaker attacker
 - $e_1 < e_{\text{min}}$
- Paper proves formulas for the e values in terms of other parameters

Some empirical results

- N responses let you learn at most $\sqrt{N}/10$ most common values
- In a sample distribution, detects mostly the most common elements
- Short case studies of malware binaries on Windows and Chrome user home pages