CSci 4271W
Development of Secure Software Systems
Day 1: Introduction and logistics

Stephen McCamant (he/him)
University of Minnesota, Computer Science & Engineering

Outline

Big-picture introduction
Discussion group greetings
Course logistics

What is computer security?

- Keep "bad things" from happening
- Distinguished by presence of an adversary

Two sides of security

- Defenders / white-hats / good guys
- Attackers / black-hats / bad guys
- Each side's strategy depends on the other
- In some ways like a game

Common security threats

- Spoofing
- Tampering
- Repudiation
- Information disclosure
- Denial of service
- Elevation of privilege

Threat modeling

- What are the relevant parts of your system?
- What threats are possible?
- How can you stop the threats?

Course areas

- Low-level software security
- OS interaction security
- Web software security
- Using cryptography
- User identities and usability

Outline

Big-picture introduction
Discussion group greetings
Course logistics
Say hello to your neighbors

- From time to time I'll ask you to discussions or exercises in groups with people sitting near you
- For today, just introduce yourself to the folks sitting nearby

Outline

- Big-picture introduction
- Discussion group greetings
- Course logistics

Face masks

- Face masks are no longer required
- But, some people may still prefer to wear them
- Please respect others’ choices in both directions
- I’ll likely cloth masks for future lectures

Mostly back to in person

- Lectures and labs held on campus, with in-person interactions
- Midterm exams will be in person
- But, accommodating medical excuses/absences
- Still a risk that things could change

Instructor information

- Stephen McCamant
- Office: 4-225E Keller (most days)
- Office hours: today 3-4pm, future weeks TBA
- Email: mccamant@cs.umn.edu

Teaching assistants

- Aditya Pakki, Ethan Witwer
- Office hours: TBA

Prerequisites

- Software design and development (3081)
- C, machine code, and compilation
 - E.g. 2021, transitive for 3081

Reading materials

- Posted on the course web site
- Download, perhaps with library proxy
- Chosen to complement lecture discussions
- Comprehension questions on Canvas
Optional book 1

Provides more detail on threat modeling, but no assigned readings

Optional book 2

Source for several readings, but chapters are free online

Evaluation components

10% Lab participation
6% Online lecture/reading Qs (best scores)
10% Problem sets
14% Two in-class midterms
60% Projects

Online lecture/reading questions

Auto-graded questions to check your understanding
Due within a week from the material posting
Can repeat to improve your score

Problem sets

2-3 sets, roughly by topic areas
Done individually
Mostly thinking and writing, not much programming
Submit in PDF online
75% technical correctness, 25% writing

Midterm exams

Two in-class exams, in February and April
Open-book, open-notes, but no electronics
No final exam

Projects

Single most important and time-consuming part of course
Each may cover:
- Modeling possible threats against a system
- Finding bugs and testing attacks
- 4-5 page writeup of your results, with revision
- Fixing the bugs
Mostly individual, 50% of grade is writing

2.5 projects

Proj 0.5: memory safety vulnerabilities preview
Proj 1: memory safety vulnerabilities
Proj 2: design project, no implementation
Writing intensive

- A major focus is effectively communicating about security
- Writing techniques will be a periodic topic in lectures
- Lots of feedback (and grading) about writing assignments
 - Projects 1 and 2 include revision in response to feedback

Late assignments

- Problem sets: half credit for up to 48 hours late
- Projects: may request an extension (from Friday night to Monday night) for one project submission

Collaboration

- Be careful about bugs: "no spoilers"
- OK to discuss general concepts
- OK to help with side tech issues
- Sharing code or written answers is never OK

External sources

- Many assignments will allow or recommend outside (library, Internet) sources
- But you must appropriately acknowledge any outside sources you use
- Failure to do so is plagiarism

Security ethics

- Don’t use techniques discussed in class to attack the security of other people’s computers!
- If we find you do, you will fail, along with other applicable penalties

Academic misconduct generally

- Don’t cheat, plagiarize, help others cheat, etc.
- Minimum penalty: 0 on assignment, report to OCS
- More serious: F in course, other OCS penalties

Course web site

- Department web site will be under csci4271
- Also linked from my home page ~mccamant

On Canvas

- Online lecture/reading questions
- Assignment submissions (or Gradescope)
- Viewing grades
- Zoom links (only if needed)
Mostly Piazza
- Online Q&A
 - Can be anonymous and/or private
 - Both students and staff can answer
- Course announcements
 - Can control delivery preferences, defaults to email
 - Reserve email for personal, administrative issues

In-person lecture/discussions
- TuTh 11:15am-12:30pm in 302 Lind
- Mixture of lecture and discussions
 - Come prepared to participate
 - Lecture slides posted

Lab sections
- Hands-on and collaborative practice with code and tools
- In person this semester in 1-262 Keller
- Graded on participation, meaning:
 - Be present and working on 4271 material
 - If you have a question, that interaction counts
 - No questions? Show off your progress

No lab this week
- Material on online interaction will be on the course web site
- Vole and SSH access to CSE Labs (review)
- Read-only screen sharing via Zoom
- Interactive terminal sharing via tmate
- Off-campus access to library materials

4271 vs. 5271
- Designed so you can take either or both
 - 5271 easier but still worthwhile after 4271
- 4271 has more of: threat modeling, software engineering, writing support
- 5271 has more of: research perspectives, novel/difficult attacks

Challenging course aspects
- Stressing C, low-level, and Unix skills
- Thinking like an attacker
- Time/project management