OF MINNESOTA TWIN CITIES

CSCI 8314

Spring 2023

SPARSE MATRIX COMPUTATIONS

Class time : MW 9:45 – 11:00am

Room : Ackerman Hall 211

Instructor: Yousef Saad

January 17, 2023

About this class: Objectives

Set 1 An introduction to sparse matrices and sparse matrix computations.

- Sparse matrices;
- Sparse matrix direct methods;
- Graph theory viewpoint; graph theory methods;

Set 2 Iterative methods and eigenvalue problems

- Iterative methods for linear systems
- Algorithms for sparse eigenvalue problems and the SVD
- Possibly: nonlinear equations

start8314

Set 3 Applications of sparse matrix techniques

- Applications of graphs; Graph Laplaceans; Networks ...;
- Standard Applications (PDEs, ..)
- Applications in machine learning
- Data-related applications
- Other instances of sparse matrix techniques

0-2

Please fill out (now if you can)

This survey

Short link url:

https://forms.gle/i5MCBg3X289JMAHd8

Who is in this class today?

- Out of 20 [as of Tuesday] registered
 - 5 in Computer Science
 - 5 in Aerospace Engineering
 - 2 Electrical Engineering
 - 2 Civil Engineering
 - 2 Chemical Engineering/ Materials Science
 - 2 Mathematics
 - 1 Statistics
 - 1 Industrial & Systems Eng.

Logistics:

Lecture notes and minimal information will be located here: 8314 at cselabs class web-sites

URL:

https://www-users.cselabs.umn.edu/classes/Spring-2023/csci8314

[also follow: 'teaching' at www.cs.umn.edu: /saad]

- There you will find :
- Lecture notes, Schedule of assignments/ tests, class info
- Canvas will contain the rest of the information: assignments, grades, etc.

0-5

About lecture notes:

- ➤ Lecture notes (like this first set) will be posted on the class web-site usually before the lecture.
- Review them to get some understanding if possible before class.
- > Read the relevant section (s) in the texts or provided references
- Lecture note sets are grouped by topics rather than by lecture.
- ➤ In the notes the symbol 🔼 indicates suggested easy exercises or questions often [not always] done in class.
- ➤ Also: occasional practice exercises posted

start8314

Matlab, Python-Numpy, etc..

- Important to use either Matlab (mostly) or Python to quickly illustrate and test algorithms.
- Scripts in either matlab or python will be posted in the 'matlab' section of the class web-site.
- Also: matlab or python demos seen in class will be posted

0 - 7

Roadmap – [subject to itinerary change!]

Part 1

- 1. Sparse matrices;
- 2. Graph representations;
- 3. Sparse direct methods for linear systems;

Part 2

- 4. Iterative methods for linear systems;
- 5. Projection methods and Krylov subspace methods;
- 6. Eigenvalue problems;

Part 3

- 7. Back to Graphs; Paths in graphs; Markov Chains;
- 8. Graph centrality;
- 9. Graph Laplaceans and applications; Clustering;
- 10. Graph embeddings.

CSCI 8314: SPARSE MATRIX COMPUTATIONS GENERAL INTRODUCTION

- General introduction a little history
- Motivation
- Resources
- What will this course cover
- Examples of problems leading to sparse matrix computations

Historical Perspective: Focus of numerical linear algebra

Linear algebra took many direction changes in the past

1940s–1950s: Major issue: flutter problem in aerospace engineering

ightarrow eigenvalue problem [cf. Olga Taussky Todd] ightarrow LR, QR, .. ightarrow 'EISPACK'

1960s: Problems related to the power grid promoted what we would call today general sparse matrix techniques

1970s— Automotive, Aerospace, ..: Computational Fluid Dynamics (CFD)

Late 1980s: Thrust on parallel matrix computations.

Late 1990s: Spur of interest in "financial computing"

Current: Machine Learning

Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng. (e.g. structures) major force behind numerical linear algebra algorithms in the past few decades.

- Strong new forces are now reshaping the field today: Applications related to the use of "data"
- ➤ Machine learning is appearing in unexpected places:
 - design of materials
 - machine learning in geophysics
 - self-driving cars, ..

•

Big impact on the economy

- New economy driven by Google, Face-book, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)
- Huge impact on Jobs

Big impact on the economy



- New economy driven by Google, Face-book, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)
- Huge impact on Jobs
- ➤ Old leaders e.g., Mining; Car companies; Aerospace; Manufacturing; offer little growth Some instances of renewal driven by new technologies [e.g. Tesla]

Look at what you are doing under new lenses: DATA

Sparse matrices: a brief history

Sparse matrices have been identified as important early on – origins of terminology is quite old. Gauss defined the first method for such systems in 1823. Varga used explicitly the term 'sparse' in his 1962 book on iterative methods.

https://www-users.cs.umn.edu/~saad/PDF/icerm2018.pdf

- Special techniques used for sparse problems coming from Partial Differential Equations
- ➤ One has to wait until to the 1960s to see the birth of the general methodology available today
- ➤ Graphs introduced as tools for sparse Gaussian elimination in 1961 [Seymour Parter]

1-6

- > Early work on reordering for banded systems, envelope methods
- > Various reordering techniques for general sparse matrices introduced.
- ➤ Minimal degree ordering [Markowitz 1957] ...
- ... later used in Harwell MA28 code [Duff] released in 1977.
- ➤ Tinney-Walker Minimal degree ordering for power systems [1967]
- Nested Dissection [A. George, 1973]
- SPARSPAK [commercial code, Univ. Waterloo]
- ➤ Elimination trees, symbolic factorization, ...

History: development of iterative methods

- ➤ 1950s up to 1970s : focus on "relaxation" methods
- > Development of 'modern' iterative methods took off in the mid-70s. but...
- ➤ ... The main ingredients were in place earlier [late 40s, early 50s: Lanczos; Arnoldi; Hestenes (a local!) and Stiefel;]
- ➤ The next big advance was the push of 'preconditioning': in effect a way of combining iterative and (approximate) direct methods [Meijerink and Van der Vorst, 1977]

https://www-users.cs.umn.edu/~saad/PDF/NIST75th.pdf

History: eigenvalue problems

- ➤ Another parallel branch was followed in sparse techniques for large eigenvalue problems.
- ➤ A big problem in 1950s and 1960s : flutter of airplane wings.. This leads to a large (sparse) eigenvalue problem
- Overlap between methods for linear systems and eigenvalue problems [Lanczos, Arnoldi]

Resources

SuiteSparse site (Formerly : Florida collection)

https://sparse.tamu.edu/

SPARSKIT, etc. [SPARSKIT = old written in Fortran. + more recent 'solvers']

http://www.cs.umn.edu/~saad/software

Intro

Resources – continued

Books: on sparse direct methods.

- Book by Tim Davis [SIAM, 2006] see syllabus for info
- ➤ An old reference [Still a great book]: Alan George and Joseph W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.
- Of interest mostly for references:
- I. S. Duff and A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Clarendon press, Oxford, 1986.
- Some coverage in Golub and van Loan [John Hopinks, 4th Ed., Chap. 10 to end]

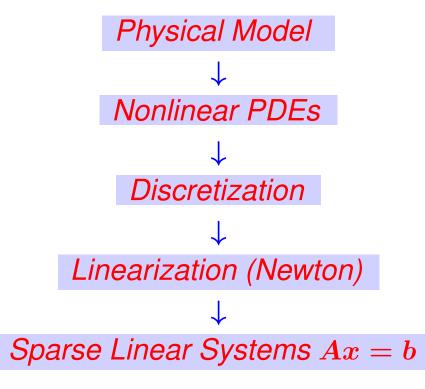
- Intro

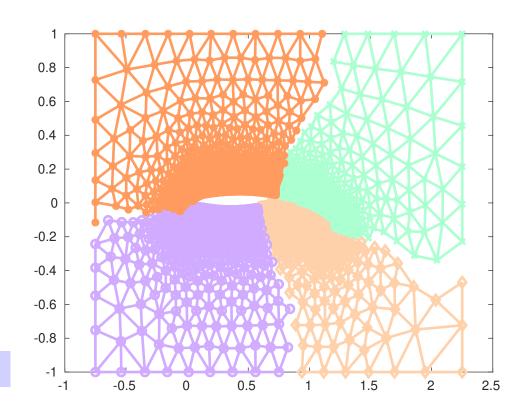
BACKGROUND: PROBLEMS LEADING TO SPARSE MATRICES

Background: Examples leading to sparse matrices

- The classical: CFD, electrical networks,
- ... and the modern:
- Graph algorithms and tools (Sparse graphs, graph coarsening, graphs and sparse methods). ..
- Dimension reduction methods; Graph embeddings;
- Specific machine learning algorithms; unsupervised/ supervised learning;
- Deep learning;
- Network analysisl
- **...**

Example: Fluid flow

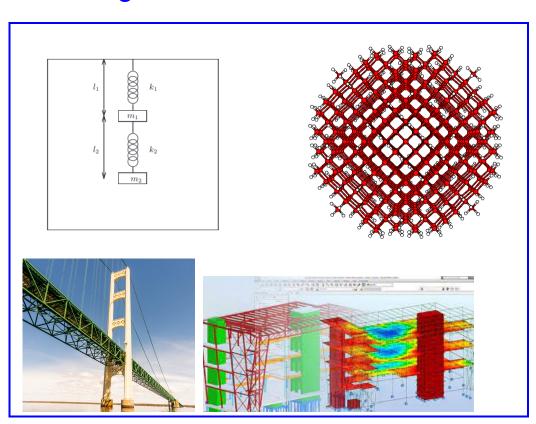




BackShort

Example: Eigenvalue Problems

ightharpoonup Many applications require the computation of a few eigenvalues + associated eigenvectors of a matrix A



- Structural Engineering (Goal: frequency response)
- Electronic structure calculations
 [Schrödinger equation..] –
 Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]

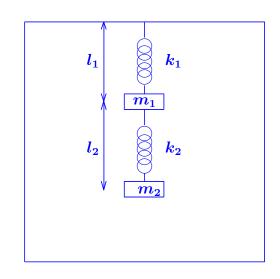
• ...

– BackShort

Example: Vibrations

➤ Vibrations in mechanical systems. See: www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

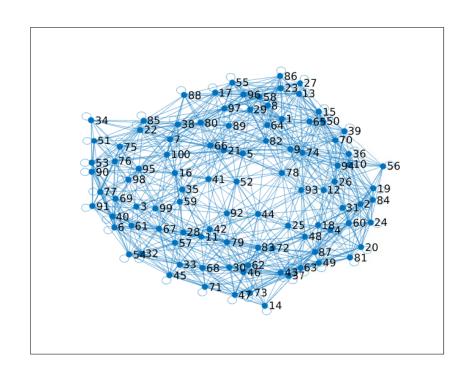
Problem: Determine the vibration modes of the mechanical system [to avoid resonance]. See details in Chapter 10 (sec. 10.2) of above reference.



Problem type: Eigenvalue Problem

Example: Google Rank (pagerank)

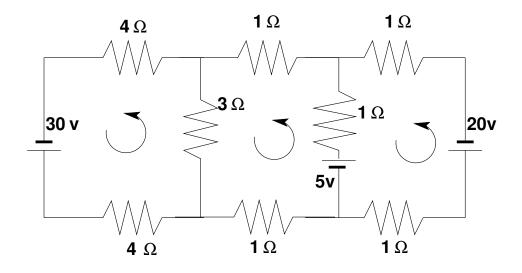
If one were to do a random walk from web page to web page, following each link on a given web page at random with equal likelihood, which are the pages to be encountered this way most often?



Problem type: (homogeneous) Linear system. Eigenvector problem.

Example: Power networks

Electrical circuits .. [Kirchhiff's voltage Law]



Problem: Determine the loop currents in a an electrical circuit - using Kirchhoff's Law (V=RI)

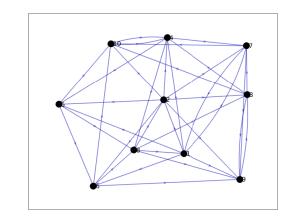
Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]

- BackShort

Example: Economics/ Marketing/ Social Networks

- ightharpoonup Given: an influence graph G: $g_{ij} =$ strength of influence of j over i
- ightharpoonup Goal: charge member i price p_i in order to maximize profit
- ➤ Utility for member i: [x_i = consumption of i]

$$u_i = ax_i - bx_i^2 + \sum_{j
eq i} g_{ij}x_j - p_ix_i$$



• 1: 'Monopolist' fixes prices; 2: agent i fixes consumption x_i

Result: Optimal pricing proportional to Bonacich centrality:

$$(I - \alpha G)^{-1}$$
 1 where $\alpha = \frac{1}{2b}$ [Candogan et al., 2012 + many refs.]

- rightarrow centrality' defines a measure of importance of a node (or an edge) in a graph
- Many other ideas of centrality in graphs [degree centrality, betweenness centrality, closeness centrality, ...]
- Important application: Social Network Analysis

Example: Method of least-squares

First use of least squares by Gauss, in early 1800's:

A planet follows an elliptical orbit according to $ay^2 + bxy + cx + dy + e = x^2$ in cartesian coordinates. Given a set of noisy observations of (x,y) positions, compute a,b,c,d,e, and use to predict future positions of the planet. This least squares problem is nearly rank-deficient and hence very sensitive to perturbations in the observations.

Problem type: Least-Squares system

Read Wikipedia's article on planet ceres:

http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)

Example: Dynamical systems and epidemiology

A set of variables that fill a vector y are governed by the equation

$$rac{dy}{dt} = Ay$$

Determine y(t) for t > 0, given y(0) [called 'orbit' of y]

Problem type: (Linear) system of ordinary differential equations.

Solution:

$$y(t) = e^{tA}y(0)$$

Involves exponential of A [think Taylor series], i.e., a matrix function

- ➤ This is the simplest form of dynamical systems (linear).
- Consider the slightly more complex system:

$$rac{dy}{dt} = A(y)y$$

Nonlinear. Requires 'integration scheme'.

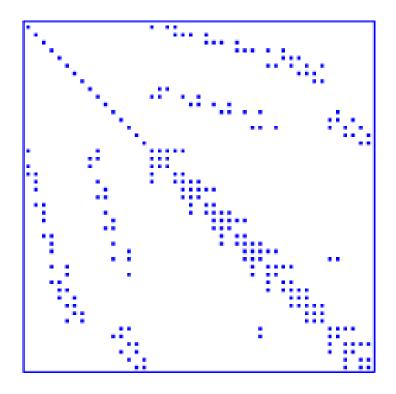
General Problems in Numerical Linear Algebra (dense & sparse)

- Linear systems: Ax = b. Often: A is large and sparse
- lacksquare Least-squares problems $\min \|b Ax\|_2$
- Eigenvalue problem $Ax = \lambda x$. Several variations -
- SVD .. and
- ... Low-rank approximation
- Tensors and low-rank tensor approximation
- Matrix equations: Sylvester, Lyapunov, Riccati, ...
- Nonlinear equations acceleration methods
- Matrix functions and applications
- Many many more ...

SPARSE MATRICES

- See the "links" page on the class web-site
- See also the various sparse matrix sites.
- Introduction to sparse matrices
- Sparse matrices in matlab –
- See Chap. 3 of text

What are sparse matrices?



Pattern of a small sparse matrix

- Vague definition: matrix with few nonzero entries
- For all practical purposes: an $m \times n$ matrix is sparse if it has $O(\min(m, n))$ nonzero entries.
- ➤ This means roughly a constant number of nonzero entries per row and column -
- This definition excludes a large class of matrices that have $O(\log(n))$ nonzero entries per row.
- ightharpoonup Other definitions use a slow growth of nonzero entries with respect to n or m.

"...matrices that allow special techniques to take advantage of the large number of zero elements." (J. Wilkinson)

A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, Google Page rank, information retrieval (LSI), circuit similation, device simulation,

Goal of Sparse Matrix Techniques

To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

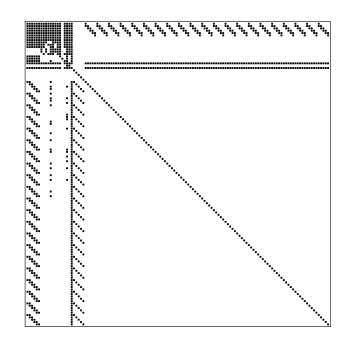
Example: To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires O(nnz(A) +nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

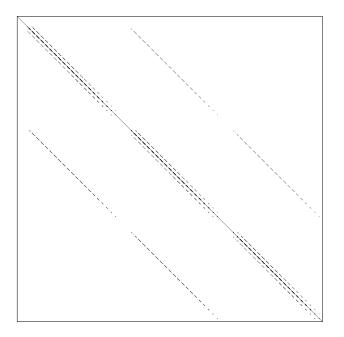
For typical Finite Element /Finite difference matrices, number of nonzero elements is O(n).

Remark: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used)

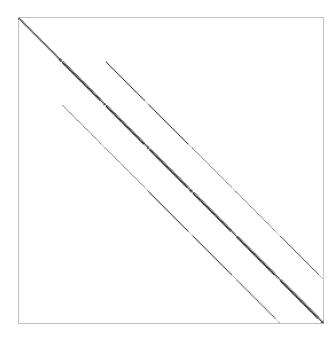
- Look up Cayley-Hamilton's theorem if you do not know about it.
- Show that the inverse of a matrix (when it exists) can be expressed as a polynomial of A, where the polynomial is of degree $\leq n-1$.
- When is the degree < n-1? [Hint: look-up minimal polynomial of a matrix]
- What is the pattern of the inverse of a tridiagonal matrix? a bidiagonal matrix?

Nonzero patterns of a few sparse matrices





ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk



PORES3: Unsymmetric MATRIX FROM PORES

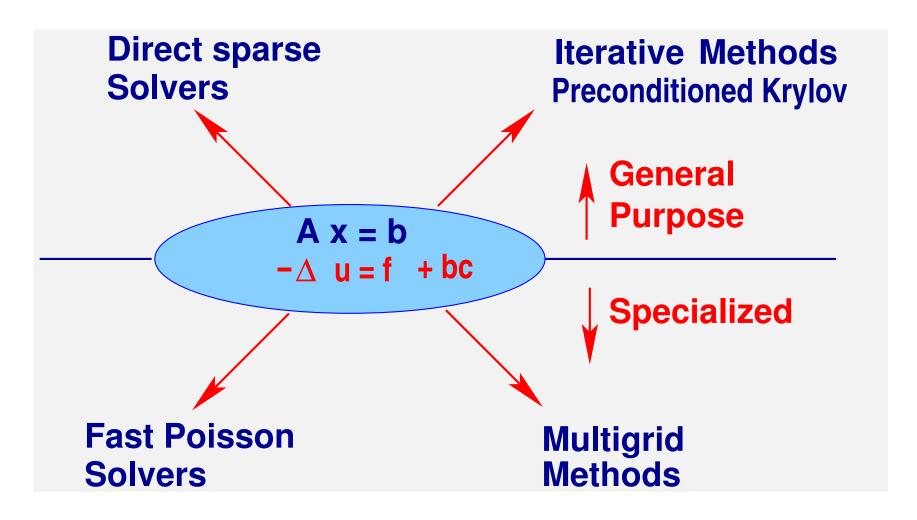


BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP

Types of sparse matrices

- Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)
- ➤ The matrices PORES3 and SHERMAN5 are from Oil Reservoir Simulation. Often: 3 unknowns per mesh point (Oil, Water saturations, Pressure). Structured matrices.
- 40 years ago reservoir simulators used rectangular grids.
- ➤ Modern simulators: Finer, more complex physics ➤ harder and larger systems. Also: unstructured matrices
- ➤ A naive but representative challenge problem: $100 \times 100 \times 100$ grid + about 10 unknowns per grid point ➤ $N \approx 10^7$, and $nnz \approx 7 \times 10^8$.

Solving sparse linear systems: existing methods



1-34

Two types of methods for general systems:

- > Direct methods: based on sparse Gaussian eimination, sparse Cholesky,...
- ➤ Iterative methods: compute a sequence of iterates which converge to the solution preconditioned Krylov methods..

Remark: These two classes of methods have always been in competition.

- ightharpoonup 40 years ago solving a system with n=10,000 was a challenge
- Now you can solve this in a fraction of a second on a laptop.

Chap 3 – sparse

- > Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.
- > 3-D problems lead to more challenging systems [inherent to the underlying graph]

Difficulty:

- No robust 'black-box' iterative solvers.
- At issue: Robustness in conflict with efficiency.
- ➤ Iterative methods are starting to use some of the tools of direct solvers to gain 'robustness'

Consensus:

- 1. Direct solvers are often preferred for two-dimensional problems (robust and not too expensive).
- 2. Direct methods loose ground to iterative techniques for three-dimensional problems, and problems with a large degree of freedom per grid point,

Sparse matrices in matlab

- Matlab supports sparse matrices to some extent.
- Can define sparse objects by conversion

$$A = sparse(X)$$
; $X = full(A)$

Can show pattern

Define the analogues of ones, eye:

```
speye(n,m), spones(pattern)
```

➤ A few reorderings functions provided.. [will be studied in detail later]

```
symrcm, symamd, colamd, colperm
```

Random sparse matrix generator:

```
sprand(S) or sprand(m,n, density)
```

(also textttsprandn(...))

Diagonal extractor-generator utility:

```
spdiags(A) , spdiags(B,d,m,n)
```

Other important functions:

```
spalloc(..) , find(..)
```

Graph Representations of Sparse Matrices

Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V, E) with $E \subset V \times V$. So G represents a binary relation. The graph is undirected if the binary relation is reflexive. It is directed otherwise. V is the vertex set and E is the edge set.

Example: Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the relations

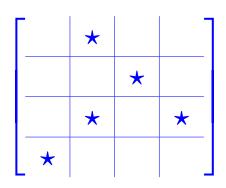
R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [mod(x,3) = mod(y,3)]

- ightharpoonup Adjacency Graph G = (V, E) of an $n \times n$ matrix A:
- Vertices $V = \{1, 2,, n\}$.
- Edges $E = \{(i,j) | a_{ij} \neq 0\}.$
- \triangleright Often self-loops (i, i) are not represented [because they are always there]
- Graph is undirected if the matrix has a symmetric structure:

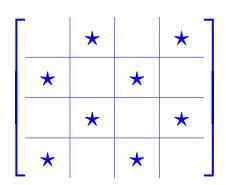
$$a_{ij} \neq 0$$
 iff $a_{ji} \neq 0$.

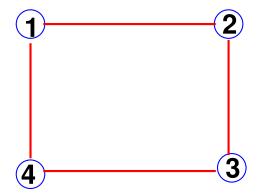
Example: (directed graph)





Example: (undirected graph)





Graph of a tridiagonal matrix? Of a dense matrix?

Recall what a star graph is. Show a matrix whose graph is a star graph. Consider two situations: Case when center node is labeled first and case when it is labeled last.

- ➤ Note: Matlab now has a graph function.
- ➤ G = graph (A) creates adjacency graph from A
- ➤ G is a matlab class/
- > G.Nodes will show the vertices of G
- ➤ G.Edges will show its edges.
- > plot(G) will show a representation of the graph

№9 Do the following:

- Load the matrix 'Bmat.mat' located in the class web-site (see 'matlab' folder)
- Visualize pattern (spy (B)) + find: Number of nonzero elements, size, ...
- Generate graph without self-edges:

```
G = graph(B,'OmitSelfLoops'
```

- Plot the graph –
- \$1M question: Any idea on how this plot is generated?