Krylov subspace methods

- Introduction to Krylov subspace techniques
- FOM, GMRES, practical details.
- Symmetric case: Conjugate gradient
- See Chapter 6 of text for details.
One-dimensional projection techniques:

\[x_{\text{new}} = x + \alpha d \]

where \(d \) = a certain direction.

\(\alpha \) is defined to optimize a certain function.

Equivalently: determine \(\alpha \) by an orthogonality constraint

Example

In MR:

\[x(\alpha) = x + \alpha d, \text{ with } d = b - Ax. \]

\[\min_{\alpha} \|b - Ax(\alpha)\|_2 \text{ reached iff } b - Ax(\alpha) \perp r \]

One-dimensional projection methods are greedy methods. They are ‘short-sighted’.
Example:

Recall in Steepest Descent: New direction of search \tilde{r} is \perp to old direction of search r.

$$r \leftarrow b - Ax,$$
$$\alpha \leftarrow (r, r)/(Ar, r),$$
$$x \leftarrow x + \alpha r$$

Question: can we do better by combining successive iterates?

Yes: Krylov subspace methods..
Consider MR (or steepest descent). At each iteration:

\[r_{k+1} = b - A(x^{(k)} + \alpha_k r_k) \]
\[= r_k - \alpha_k A r_k \]
\[= (I - \alpha_k A) r_k \]

In the end:

\[r_{k+1} = (I - \alpha_k A)(I - \alpha_{k-1} A) \cdots (I - \alpha_0 A) r_0 = p_{k+1}(A) r_0 \]

where \(p_{k+1}(t) \) is a polynomial of degree \(k + 1 \) of the form

\[p_{k+1}(t) = 1 - t q_k(t) \]

Show that:

\[x^{(k+1)} = x^{(0)} + q_k(A) r_0 \]

Krylov subspace methods: iterations of this form that are ‘optimal’ [from \(m \)-dimensional projection methods]
Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

\[K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\} \]

- The most important class of iterative methods.
- Many variants exist depending on the subspace \(L \).

Simple properties of \(K_m \) \([\mu \equiv \text{deg. of minimal polynomial of } v_1.] \)

- \(K_m = \{p(A)v_1|p = \text{polynomial of degree } \leq m - 1\} \)
- \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
- \(\text{dim}(K_m) = m \) iff \(\mu \geq m \).
A little review: Gram-Schmidt process

Goal: given \(X = [x_1, \ldots, x_m] \) compute an orthonormal set \(Q = [q_1, \ldots, q_m] \) which spans the same subspace.

ALGORITHM : Classical Gram-Schmidt

1. For \(j = 1, \ldots, m \) Do:
2. Compute \(r_{ij} = (x_j, q_i) \) for \(i = 1, \ldots, j - 1 \)
3. Compute \(\hat{q}_j = x_j - \sum_{i=1}^{j-1} r_{ij} q_i \)
4. \(r_{jj} = \|\hat{q}_j\|_2 \) If \(r_{jj} == 0 \) exit
5. \(q_j = \hat{q}_j / r_{jj} \)
6. EndDo
ALGORITHM : 2. \textit{Modified Gram-Schmidt}

1. For \(j = 1, \ldots, m \) Do:
2. \(\hat{q}_j := x_j \)
3. For \(i = 1, \ldots, j - 1 \) Do
4. \(r_{ij} = (\hat{q}_j, q_i) \)
5. \(\hat{q}_j := \hat{q}_j - r_{ij} q_i \)
6. EndDo
7. \(r_{jj} = \|\hat{q}_j\|_2. \text{ If } r_{jj} == 0 \text{ exit} \)
8. \(q_j := \hat{q}_j / r_{jj} \)
9. EndDo
Let:

\(X = [x_1, \ldots, x_m] \) (\(n \times m \) matrix)

\(Q = [q_1, \ldots, q_m] \) (\(n \times m \) matrix)

\(R = \{r_{ij}\} \) (\(m \times m \) upper triangular matrix)

At each step,

\[
x_j = \sum_{i=1}^{j} r_{ij} q_i
\]

Result:

\[X = QR \]
Arnoldi’s algorithm

Goal: to compute an orthogonal basis of K_m.

Input: Initial vector v_1, with $\|v_1\|_2 = 1$ and m.

Algorithm:

1. for $j = 1, \ldots, m$ do
2. Compute $w := Av_j$
3. for $i = 1, \ldots, j$ do
4. $h_{i,j} := (w, v_i)$
5. $w := w - h_{i,j}v_i$
6. end for
7. Compute: $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w / h_{j+1,j}$
8. end for
Result of orthogonalization process (Arnoldi):

1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m.

2. $AV_m = V_{m+1} \overline{H}_m$

3. $V_m^T AV_m = H_m \equiv \overline{H}_m$—last row.

$V_m = \begin{bmatrix} V_m, v_{m+1} \end{bmatrix}$

$A V_m = V_{m+1} \overline{H}_m$

$\overline{H}_m = \begin{bmatrix} \ast & \ast & \cdots & \ast \\ \ast & \ast & \cdots & \ast \\ \vdots & \vdots & \ddots & \vdots \\ \ast & \ast & \cdots & \ast \end{bmatrix}$

$V_{m+1} = [V_m, v_{m+1}]$
Arnoldi’s Method for linear systems \((L_m = K_m)\)

From Petrov-Galerkin condition when \(L_m = K_m\), we get

\[x_m = x_0 + V_m H_m^{-1} V_m^T r_0 \]

Select \(v_1 = r_0/\|r_0\|_2 \equiv r_0/\beta\) in Arnoldi’s. Then

\[x_m = x_0 + \beta V_m H_m^{-1} e_1 \]

What is the residual vector \(r_m = b - Ax_m\)?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s ORTHORES [1982], Axelsson’s projection method [1981],...

* Also Conjugate Gradient method [see later]
Minimal residual methods \((L_m = AK_m)\)

When \(L_m = AK_m\), we let \(W_m \equiv AV_m\) and obtain relation

\[
x_m = x_0 + V_m [W_m^T AV_m]^{-1} W_m^T r_0
= x_0 + V_m [(AV_m)^T AV_m]^{-1} (AV_m)^T r_0.
\]

- Use again \(v_1 := r_0 / (\beta := \|r_0\|_2)\) and the relation

\[
AV_m = V_{m+1} \bar{H}_m
\]

- \(x_m = x_0 + V_m [\bar{H}_m^T \bar{H}_m]^{-1} \bar{H}_m^T \beta e_1 = x_0 + V_m y_m\)

where \(y_m\) minimizes \(\|\beta e_1 - \bar{H}_m y\|_2\) over \(y \in \mathbb{R}^m\).
Gives the Generalized Minimal Residual method (GMRES) ([YS-Schultz,’86]):

\[x_m = x_0 + V_m y_m \quad \text{where} \]
\[y_m = \min_{y} \| \beta e_1 - \bar{H}_m y \|_2 \]

Several Mathematically equivalent methods:
- Axelsson’s CGLS
- Orthomin (1980)
- Orthodir
- GCR
A few implementation details: GMRES

Issue 1: How to solve the least-squares problem?

Issue 2: How to compute residual norm (without computing solution at each step)?

- Several solutions to both issues. Simplest: use Givens rotations.
- Recall: We want to solve least-squares problem
 \[
 \min_y \| \beta e_1 - \overline{H} m y \|_2
 \]
- Transform the problem into upper triangular one.
Rotation matrices of dimension $m + 1$. Define (with $s_i^2 + c_i^2 = 1$):

$$\Omega_i = \begin{bmatrix} 1 & & & \cdots & & & \cdots & & & 1 \\ & 1 & & \cdots & & & \cdots & & & \\ & & c_i & s_i & & & & & & \\ & & -s_i & c_i & & & & & & \\ & & & & 1 & & \cdots & & & \cdots & & 1 \end{bmatrix} \leftarrow \text{row } i \leftarrow \text{row } i + 1$$

Multiply \bar{H}_m and right-hand side $\bar{g}_0 \equiv \beta e_1$ by a sequence of such matrices from the left. s_i, c_i selected to eliminate $h_{i+1,i}$.
\[
\tilde{H}_5 = \begin{bmatrix}
 h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\
 h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\
 h_{32} & h_{33} & h_{34} & h_{35} & \\
 h_{43} & h_{44} & h_{45} & \\
 h_{54} & h_{55} & \\
 h_{65} &
\end{bmatrix}, \quad \tilde{g}_0 = \begin{bmatrix}
 \beta \\
 0 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\]

\[\Omega_1 = \begin{bmatrix}
 \cos s_1 & \sin s_1 & \\
 -\sin s_1 & \cos s_1 & \\
 1 & 1 & \\
\end{bmatrix} \quad \text{with:} \quad s_1 = \frac{h_{21}}{\sqrt{h_{11}^2 + h_{21}^2}}, \quad c_1 = \frac{h_{11}}{\sqrt{h_{11}^2 + h_{21}^2}} \]

1-st Rotation:
\[
\bar{H}^{(1)}_m = \begin{bmatrix}
h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \\
h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \\
h_{32} & h_{33} & h_{34} & h_{35} \\
h_{43} & h_{44} & h_{45} \\
h_{54} & h_{55} \\
h_{65}
\end{bmatrix}, \quad \bar{g}_1 = \begin{bmatrix}
c_1\beta \\
-s_1\beta \\
0 \\
0 \\
0
\end{bmatrix}
\]

Repeat with \(\Omega_2, \ldots, \Omega_5\). Result:

\[
\bar{H}^{(5)}_5 = \begin{bmatrix}
h_{11}^{(5)} & h_{12}^{(5)} & h_{13}^{(5)} & h_{14}^{(5)} & h_{15}^{(5)} \\
h_{22}^{(5)} & h_{23}^{(5)} & h_{24}^{(5)} & h_{25}^{(5)} \\
h_{33}^{(5)} & h_{34}^{(5)} & h_{35}^{(5)} \\
h_{44}^{(5)} & h_{45}^{(5)} \\
h_{55}^{(5)} \\
0
\end{bmatrix}, \quad \bar{g}_5 = \begin{bmatrix}
g_1 \\
g_2 \\
g_3 \\
. \\
. \\
g_6
\end{bmatrix}
\]
Define

\[Q_m = \Omega_m \Omega_{m-1} \cdots \Omega_1 \]
\[\bar{R}_m = \bar{H}_m^{(m)} = Q_m \bar{H}_m, \]
\[\bar{g}_m = Q_m (\beta e_1) = (\gamma_1, \ldots, \gamma_{m+1})^T. \]

Since \(Q_m \) is unitary,

\[
\min \| \beta e_1 - \bar{H}_m y \|_2 = \min \| \bar{g}_m - \bar{R}_m y \|_2.
\]

Delete last row and solve resulting triangular system.

\[R_m y_m = g_m \]
Proposition:

1. The rank of AV_m is equal to the rank of R_m. In particular, if $r_{mm} = 0$ then A must be singular.

2. The vector y_m that minimizes $\|\beta e_1 - \bar{H}_m y\|_2$ is given by

$$y_m = R_m^{-1} g_m.$$

3. The residual vector at step m satisfies

$$b - Ax_m = V_{m+1} \left[\beta e_1 - \bar{H}_m y_m \right] = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1})$$

4. As a result, $\|b - Ax_m\|_2 = |\gamma_{m+1}|$.
