Krylov subspace methods	Motivation
 Introduction to Krylov subspace techniques FOM, GMRES, practical details. Symmetric case: Conjugate gradient See Chapter 6 of text for details. 	 One-dimensional projection techniques: x_{new} = x + αd where d = a certain direction. α is defined to optimize a certain function. Equivalently: determine α by an orthogonality constraint
	Example In MR: $\begin{aligned} \text{In MR:} \\ x(\alpha) &= x + \alpha d, \text{ with } d = b - Ax. \\ \min_{\alpha} \ b - Ax(\alpha)\ _2 \text{ reached iff } b - Ax(\alpha) \perp r \end{aligned}$
	One-dimensional projection methods are greedy methods. They are 'short-sighted'. 10-2 Text: 6 – Krylov1
Example:	Krylov subspace methods: Introduction
Recall in Steepest Descent: New direction of $egin{array}{c} r \leftarrow b - Ax, \\ lpha \leftarrow (r,r)/(Ar,r) \\ x \leftarrow x + lpha r \end{array}$	Consider MR (or steepest descent). At each iteration: $r_{k+1} = b - A(x^{(k)} + \alpha_k r_k)$ $= r_k - \alpha_k A r_k$ $= (I - \alpha_k A) r_k$
	$ \textbf{here and } r_{k+1} = (I - \alpha_k A)(I - \alpha_{k-1}A) \cdots (I - \alpha_0 A)r_0 = p_{k+1}(A)r_0 $ where $p_{k+1}(t)$ is a polynomial of degree $k + 1$ of the form $ p_{k+1}(t) = 1 - tq_k(t) $
 <i>Question:</i> can we do better by combining successive iterates? Yes: Krylov subspace methods 	 Show that: x^(k+1) = x⁽⁰⁾ + q_k(A)r₀, with deg (q_k) = k Krylov subspace methods: iterations of this form that are 'optimal' [from <i>m</i>-dimensional projection methods]
10-3 Text: 6 – Krylov1	10-4 Text: 6 – Krylov1

Krylov subspace methods	A little review: Gram-Schmidt process
Principle:Projection methods on Krylov subspaces: $K_m(A, v_1) = \operatorname{span}\{v_1, Av_1, \cdots, A^{m-1}v_1\}$ • The most important class of iterative methods.• Many variants exist depending on the subspace L .Simple properties of K_m [$\mu \equiv \deg$ of minimal polynomial of v_1 .]• $K_m = \{p(A)v_1 p = \operatorname{polynomial} of degree \leq m - 1\}$ • $K_m = K_\mu$ for all $m \geq \mu$. Moreover, K_μ is invariant under A .• $\dim(K_m) = m$ iff $\mu \geq m$.105Text: 6 - Krylov1ALGORITHM : 2. Modified Gram-Schmidt1. For $j = 1, \dots, m$ Do:2. $\hat{q}_j := x_j$ 3. For $i = 1, \dots, j - 1$ Do4. $r_{ij} = (\hat{q}_j, q_i)$ 5. $\hat{q}_j := \hat{q}_j - r_{ij}q_i$ 6. EndDo7. $r_{jj} = \hat{q}_j _2$. If $r_{jj} == 0$ exit8. $q_j := \hat{q}_j/r_{jj}$	A little review: Gram-Schmidt process Goal: given $X = [x_1, \dots, x_m]$ compute an orthonormal set $Q = [q_1, \dots, q_m]$ which spans the same susbpace. ALGORITHM : 1. Classical Gram-Schmidt 1. For $j = 1, \dots, m$ Do: 2. Compute $r_{ij} = (x_j, q_i)$ for $i = 1, \dots, j - 1$ 3. Compute $\hat{q}_j = x_j - \sum_{i=1}^{j-1} r_{ij}q_i$ 4. $r_{jj} = \hat{q}_j _2$ If $r_{jj} = 0$ exit 5. $q_j = \hat{q}_j/r_{jj}$ 6. EndDo Text: 6 - Krylov1 Let: X = $[x_{1,1}, \dots, q_m]$ ($n \times m$ matrix) $Q = [q_1, \dots, q_m]$ ($n \times m$ matrix) $R = \{r_{ij}\}$ ($m \times m$ upper triangular matrix) $F = \sum_{i=1}^{j} r_{ij}q_i$
9. EndDo	$\overline{i=1}$ Result: $X = QR$ 10.8 Text: 6 - Krylov1

Arnoldi's algorithm

- > Goal: to compute an orthogonal basis of K_m .
- > Input: Initial vector v_1 , with $||v_1||_2 = 1$ and m.

ALGORITHM : 3 Arnoldi

- $_{t}$ for j=1,...,m do
- 2 Compute $w := A v_j$
- $_{\scriptscriptstyle x}$ for $i=1,\ldots,j$ do
- $h_{i,j}:=(w,v_i)$
- s: $w:=w-h_{i,j}v_i$
- end for
- z Compute: $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w/h_{j+1,j}$
- a end for

10-9

10-11

Arnoldi's Method for linear systems $(L_m = K_m)$

From Petrov-Galerkin condition when $L_m = K_m$, we get

- > Select $v_1 = r_0/\|r_0\|_2 \equiv r_0/eta$ in $x_m = x_0 + eta V_m H_m^{-1} e_1$ Arnoldi's. Then
- **Mat** is the residual vector $r_m = b Ax_m$?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea's ORTHORES [1982], Axelsson's projection method [1981],...

* Also Conjugate Gradient method [see later]

Result of orthogonalization process (Arnoldi):

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m . 2. $AV_m = V_{m+1}\overline{H}_m$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m \text{last row.}$

$$V_{m} = \begin{matrix} AV_{m} = V_{m+1}\overline{H}_{m} \\ \overline{H}_{m} = \begin{matrix} \bigcirc \\ O \end{matrix}$$
$$V_{m+1} = [V_{m}, v_{m+1}]$$

Minimal residual methods $(L_m = AK_m)$

When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain relation

$$egin{aligned} & x_m \,=\, x_0 + V_m [W_m^T A V_m]^{-1} W_m^T r_0 \ &=\, x_0 + V_m [(A V_m)^T A V_m]^{-1} (A V_m)^T r_0. \end{aligned}$$

▶ Use again $v_1 := r_0/(\beta := ||r_0||_2)$ and the relation

$$AV_m = V_{m+1}\overline{H}_m$$

 $\succ x_m = x_0 + V_m [\bar{H}_m^T \bar{H}_m]^{-1} \bar{H}_m^T \beta e_1 = x_0 + V_m y_m$ where y_m minimizes $\|\beta e_1 - \bar{H}_m y\|_2$ over $y \in \mathbb{R}^m$.

Text: 6 – Krylov1

Text: 6 - Krylov1

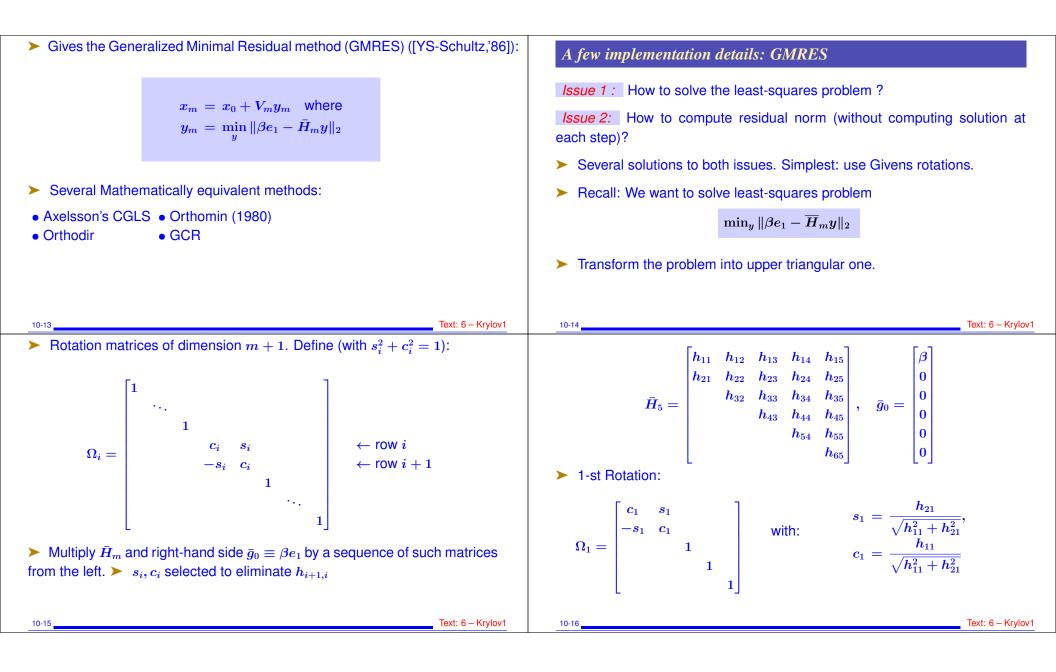
 $x_m = x_0 + V_m H_m^{-1} V_m^T r_0$

10-10

10-12

Text: 6 - Krylov1

Text: 6 - Krylov1



$$H_{n}^{(1)} = \begin{bmatrix} h_{11}^{(1)} & h_{12}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{13}^{(1)} \\ h_{22}^{(1)} & h_{32}^{(1)} & h_{33}^{(1)} & h_{33}^{(1)} \\ h_{32} & h_{33} & h_{34} & h_{35} \\ h_{34} & h_{45} & h_{35} \\ h_{54} & h_{56} & h_{56} \end{bmatrix}, \bar{h}_{56}^{(1)} & h_{56}^{(1)} & h_{56}^{(1)} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \bar{h}_{5}^{(1)} = \begin{bmatrix} h_{11}^{(1)} & h_{12}^{(1)} & h_{12}^{(0)} & h_{13}^{(1)} \\ h_{22}^{(1)} & h_{22}^{(1)} & h_{22}^{(1)} & h_{22}^{(1)} \\ h_{22}^{$$