Krylov subspace methods (Continued)

- Practical variants: restarting and truncating
- Symmetric case: The link with the Lanczos algorithm
- The Conjugate Gradient algorithm
- See Chapter 6 of text for details.
Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restart. Fix m (dim. of subspace)

ALGORITHM : 1
Restarted GMRES (resp. Arnoldi)

1. **(Re)-Start:** Compute $r_0 = b - Ax_0$, Set: $v_1 = r_0 / (\beta := \|r_0\|_2)$.
2. **Arnoldi Process:** generate \bar{H}_m and V_m.
3. **Compute**

 $y_m = H_m^{-1} \beta e_1$ (FOM), or

 $y_m = \text{argmin} \|\beta e_1 - \bar{H}_m y\|_2$ (GMRES)
4. $x_m = x_0 + V_m y_m$
5. **If** $\|r_m\|_2 \leq \epsilon \|r_0\|_2$ **stop**

 else set $x_0 := x_m$ and go to 1.
Second remedy: Truncate the orthogonalization

Formula for v_{j+1} replaced by:

$$h_{j+1,j}v_{j+1} = Av_j - \sum_{i=j-k+1}^{j} h_{ij}v_i$$

- Each v_j is made orthogonal to the previous k v_i’s.
- x_m still computed as $x_m = x_0 + V_mH_m^{-1}\beta e_1$.
- It can be shown that this is an oblique projection process.

- IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or ‘incomplete’) orthogonalization.
The direct version of IOM [DIOM]:

Write the LU decomposition of H_m as $H_m = L_m U_m$

$$x_m = x_0 + \begin{color}{blue}V_m U_m^{-1}\end{color} L_m^{-1} \beta e_1 \equiv x_0 + P_m z_m$$

Structure of L_m, U_m when $k = 3$

$$L_m = \begin{bmatrix} 1 \\ x & 1 \\ x & 1 \\ x & 1 \end{bmatrix}, \quad U_m = \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \\ x & x \end{bmatrix}$$

$$p_m = u_{mm}^{-1} [v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i]$$

$$z_m = \begin{bmatrix} z_{m-1} \\ \zeta_m \end{bmatrix}$$
Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$

Algorithm:

Until convergence do:

- Update LU factorization of $H_m \rightarrow H_m = L_m U_m$
- $p_m = u_{mm}^{-1} [v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i]$
- $x_m = x_{m-1} + \zeta_m p_m$
- $h_{m+1,m} v_{m+1} = A v_m - \sum_{i=m-k+1}^{m} h_{im} v_i$ (Arnoldi step)

Enddo

Requires $2k + 1$ vectors [in addition to solution]
Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_m matrix

- CG-like formulation of IOM called DIOM [YS, 1982]
- ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)
- SYMMLQ [Paige and Saunders, ’77] uses LQ factorization of H_m.
- Can incorporate partial pivoting in LU factorization of H_m
The symmetric case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

$$H_m = V_m^T AV_m$$

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal:

$$h_{ij} = 0 \quad 1 \leq i < j - 1; \quad \text{and}$$
$$h_{j,j+1} = h_{j+1,j}, \quad j = 1, \ldots, m$$
We can write

\[
H_m = \begin{bmatrix}
\alpha_1 & \beta_2 \\
\beta_2 & \alpha_2 & \beta_3 \\
\beta_3 & \alpha_3 & \beta_4 \\
& \ddots & \ddots & \ddots \\
& & \beta_m & \alpha_m
\end{bmatrix}
\] (1)

The \(v_i\)'s satisfy a 3-term recurrence [Lanczos Algorithm]:

\[
\beta_{j+1}v_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}
\]

Simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi → Symmetric Lanczos
The Lanczos algorithm

ALGORITHM : 2 \textit{Lanczos}

1. **Choose an initial vector** \(v_1 \), \text{s.t.} \(\|v_1\|_2 = 1 \)

 Set \(\beta_1 \equiv 0, v_0 \equiv 0 \)

2. **For** \(j = 1, 2, \ldots, m \) **Do:**

3. \quad \(w_j := Av_j - \beta_j v_{j-1} \)

4. \quad \(\alpha_j := (w_j, v_j) \)

5. \quad \(w_j := w_j - \alpha_j v_j \)

6. \quad \(\beta_{j+1} := \|w_j\|_2. \text{If} \beta_{j+1} = 0 \text{ then Stop} \)

7. \quad \(v_{j+1} := w_j / \beta_{j+1} \)

8. **EndDo**
Lanczos algorithm for linear systems

Usual orthogonal projection method setting:

- \(L_m = K_m = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\} \)
- Basis \(V_m = [v_1, \ldots, v_m] \) of \(K_m \) generated by the Lanczos algorithm

Three different possible implementations.

1. Arnoldi-like;
2. Exploit tridiagonal nature of \(H_m \) (DIOM);
3. Conjugate gradient - derived from (2)
ALGORITHM : 3. **Lanczos Method for Linear Systems**

1. Compute \(r_0 = b - Ax_0 \), \(\beta := \|r_0\|_2 \), and \(v_1 := r_0/\beta \)
2. For \(j = 1, 2, \ldots, m \) Do:
 3. \(w_j = Av_j - \beta_j v_{j-1} \) (If \(j = 1 \) set \(\beta_1 v_0 \equiv 0 \))
 4. \(\alpha_j = (w_j, v_j) \)
 5. \(w_j := w_j - \alpha_j v_j \)
 6. \(\beta_{j+1} = \|w_j\|_2 \). If \(\beta_{j+1} = 0 \) set \(m := j \) and go to 9
 7. \(v_{j+1} = w_j/\beta_{j+1} \)
8. EndDo
9. Set \(T_m = \text{tridiag}(\beta_i, \alpha_i, \beta_{i+1}) \), and \(V_m = [v_1, \ldots, v_m] \).
10. Compute \(y_m = T_m^{-1}(\beta e_1) \) and \(x_m = x_0 + V_m y_m \)
1. Compute $r_0 = b - Ax_0$, $\zeta_1 := \beta := \|r_0\|_2$, and $v_1 := \frac{r_0}{\beta}$

2. Set $\lambda_1 = \beta_1 = 0$, $p_0 = 0$

3. For $m = 1, 2, \ldots$, until convergence Do:

4. Compute $w := Av_m - \beta_m v_{m-1}$ and $\alpha_m = (w, v_m)$

5. If $m > 1$ compute $\lambda_m = \frac{\beta_m}{\eta_{m-1}}$ and $\zeta_m = -\lambda_m \zeta_{m-1}$

6. $\eta_m = \alpha_m - \lambda_m \beta_m$

7. $p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1})$

8. $x_m = x_{m-1} + \zeta_m p_m$

9. If x_m has converged then Stop

10. $w := w - \alpha_m v_m$

11. $\beta_{m+1} = \|w\|_2$, $v_{m+1} = w/\beta_{m+1}$

12. EndDo
The Conjugate Gradient Algorithm (A S.P.D.)

- In D-Lanczos, $r_m = \text{scalar} \times v_{m-1}$ and $p_m = \text{scalar} \times [v_m - \beta_m p_{m-1}]$

- And we have $x_m = x_{m-1} + \xi_m p_m$

- So there must exist an update of the form:

 1. $p_{m+1} = r_m + \beta_m p_m$
 2. $x_{m+1} = x_m + \xi_{m+1} p_{m+1}$
 3. $r_{m+1} = r_m - \xi_{m+1} A p_{m+1}$

- Note: p_m is scaled differently and β_m is not the same

- .. In CG, index of p_m aligned with that of r_m – so p_j replaced by p_{j-1}.

- Note: the p_i’s are A-orthogonal

- The r'_i’s are orthogonal.
1. Start: \(r_0 := b - Ax_0, \ p_0 := r_0. \)

2. Iterate: Until convergence do,

(a) \(\alpha_j := (r_j, r_j) / (Ap_j, p_j) \)
(b) \(x_{j+1} := x_j + \alpha_j p_j \)
(c) \(r_{j+1} := r_j - \alpha_j Ap_j \)
(d) \(\beta_j := (r_{j+1}, r_{j+1}) / (r_j, r_j) \)
(e) \(p_{j+1} := r_{j+1} + \beta_j p_j \)

• \(r_j = scaling \times v_{j+1} \). The \(r_j \)'s are orthogonal.
• The \(p_j \)'s are \(A \)-conjugate, i.e., \((Ap_i, p_j) = 0 \) for \(i \neq j \).

Question: How to apply preconditioning?
A bit of history. From the 1952 CG article:

“The method of conjugate gradients was developed independently by E. Stiefel of the Institute of Applied Mathematics at Zurich and by M. R. Hestenes with the cooperation of J. B. Rosser, G. Forsythe, and L. Paige of the Institute for Numerical Analysis, National Bureau of Standards. The present account was prepared jointly by M. R. Hestenes and E. Stiefel during the latter’s stay at the National Bureau of Standards. The first papers on this method were given by E. Stiefel [1952] and by M. R. Hestenes [1951]. Reports on this method were given by E. Stiefel and J. B. Rosser at a Symposium on August 23-25, 1951. Recently, C. Lanczos [1952] developed a closely related routine based on his earlier paper on eigenvalue problem [1950]. Examples and numerical tests of the method have been by R. Hayes, U. Hoschstrasser, and M. Stein.”