Preconditioning

- Introduction to preconditioning
- Preconditioned iterations
- Preconditioned CG and GMRES.
- Basic preconditioners.
- $ILU(0)$, $ILU(p)$, $ILUT$ preconditioners
- See Chapters 9, 10 of text for details.
Preconditioning – Basic principles

Basic idea:
Use Krylov subspace method on a modified system such as:

\[M^{-1}Ax = M^{-1}b. \]

- The matrix \(M^{-1}A \) need not be formed explicitly; only need to solve \(Mw = v \) whenever needed.

- Consequence: fundamental requirement is that it should be easy to compute \(M^{-1}v \) for an arbitrary vector \(v \).

- We want: \(M \) close to \(A \) (system easier to solve) but operation \(v \rightarrow M^{-1}v \) inexpensive (added cost not too high).
Left, Right, and Split preconditioning

Left preconditioning

\[M^{-1}Ax = M^{-1}b \]

Right preconditioning

\[AM^{-1}u = b, \text{ with } x = M^{-1}u \]

Split preconditioning: \(M \) is factored as \(M = M_L M_R \).

\[M_L^{-1} AM_R^{-1}u = M_L^{-1}b, \text{ with } x = M_R^{-1}u \]
Preconditioned CG (PCG)

- Assume: \(A \) and \(M \) are both SPD.
- Can apply CG directly to systems
 \(M^{-1}Ax = M^{-1}b \) or \(AM^{-1}u = b \)
- Problem: loss of symmetry
- Alternative: when \(M = LL^T \) use split preconditioner option
- Second alternative: Observe that \(M^{-1}A \) is self-adjoint with respect to \(M \) inner product:

\[
(M^{-1}Ax, y)_M = (Ax, y) = (x, Ay) = (x, M^{-1}Ay)_M
\]
Preconditioned CG (PCG)

ALGORITHM 1: Preconditioned CG

1. Compute $r_0 := b - Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
2. For $j = 0, 1, \ldots$, until convergence Do:
 3. $\alpha_j := (r_j, z_j)/(Ap_j, p_j)$
 4. $x_{j+1} := x_j + \alpha_j p_j$
 5. $r_{j+1} := r_j - \alpha_j Ap_j$
 6. $z_{j+1} := M^{-1}r_{j+1}$
 7. $\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$
 8. $p_{j+1} := z_{j+1} + \beta_j p_j$
 9. EndDo
Note $M^{-1}A$ is also self-adjoint with respect to $(.,.)_A$:

$$(M^{-1}Ax, y)_A = (AM^{-1}Ax, y) = (x, AM^{-1}Ay) = (x, M^{-1}Ay)_A$$

- Can obtain a similar algorithm
- Assume that $M = \text{Cholesky product } M = LL^T$.

Then, another possibility: Split preconditioning option, which applies CG to the system

$$L^{-1}AL^{-T}u = L^{-1}b, \text{ with } x = L^Tu$$

- Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by $\hat{\cdot}$.
ALGORITHM 2. *CG with Split Preconditioner*

1. **Compute** \(r_0 := b - Ax_0; \) \(\hat{r}_0 = L^{-1}r_0; \) \(p_0 := L^{-T}\hat{r}_0. \)
2. **For** \(j = 0, 1, \ldots, \) **until convergence** **Do:**
 3. \(\alpha_j := (\hat{r}_j, \hat{r}_j)/(Ap_j, p_j) \)
 4. \(x_{j+1} := x_j + \alpha_j p_j \)
 5. \(\hat{r}_{j+1} := \hat{r}_j - \alpha_j L^{-1}Ap_j \)
 6. \(\beta_j := (\hat{r}_{j+1}, \hat{r}_{j+1})/(\hat{r}_j, \hat{r}_j) \)
 7. \(p_{j+1} := L^{-T}\hat{r}_{j+1} + \beta_j p_j \)
 8. **EndDo**

▶ The \(x_j \)'s produced by the above algorithm and PCG are identical (if same initial guess is used).

Show this
1. **Start**: Choose x_0 and a dimension m

2. **Arnoldi process**:

 - Compute $r_0 = b - Ax_0$, $\beta = \|r_0\|_2$ and $v_1 = r_0/\beta$.

 - For $j = 1, \ldots, m$ do
 - Compute $z_j := M^{-1}v_j$
 - Compute $w := Az_j$
 - for $i = 1, \ldots, j$, do: \(h_{i,j} := (w, v_i) \)
 - \(w := w - h_{i,j}v_i \)
 - \(h_{j+1,1} = \|w\|_2; v_{j+1} = w/h_{j+1,1} \)

 - Define $V_m := [v_1, \ldots, v_m]$ and $\bar{H}_m = \{h_{i,j}\}$.

ALGORITHM: 3. GMRES – (right) Preconditioned
3. Form the approximate solution: \[x_m = x_0 + M^{-1}V_m y_m \] where
\[y_m = \arg\min_y \| \beta e_1 - \bar{H}_m y \|_2 \] and \(e_1 = [1, 0, \ldots, 0]^T \).

4. Restart: If satisfied stop, else set \(x_0 \leftarrow x_m \) and goto 2.

Remark: \(M \) is assumed to be the same at each step \(j \). Situations may arise where \(M \) varies: \(M \rightarrow M_j \). We need a ‘Flexible’ accelerator that allows this. Changes needed:

1) Save each \(z_j \) into matrix \(Z_m = [z_1, \ldots, z_m] \).

2) Replace \(M^{-1}V_m \) by \(Z_m \) to form solution in step 3.

What optimality property is satisfied with (1) Left Preconditioned GMRES, (2) Right Preconditioned GMRES; (3) Flexible GMRES?
Standard preconditioners

• Simplest preconditioner: $M = \text{Diag}(A)$ ➤ poor convergence.
• Next to simplest: SSOR. $M = (D - \omega E)D^{-1}(D - \omega F')$
• Still simple but often more efficient: ILU(0).
• ILU(p) – ILU with level of fill p – more complex.
• Class of ILU preconditioners with threshold
• Class of approximate inverse preconditioners
• Class of Multilevel ILU preconditioners
• Algebraic Multigrid Preconditioners
The SOR/SSOR preconditioner

SOR preconditining

\[M_{\text{SOR}} = (D - \omega E) \]

SSOR preconditining

\[M_{\text{SSOR}} = (D - \omega E)D^{-1}(D - \omega F) \]

\[M_{\text{SSOR}} = LU, \; L = \text{lower unit matrix}, \; U = \text{upper triangular}. \; \text{One solve with } M_{\text{SSOR}} \approx \text{same cost as a MAT-VEC.} \]
- k-step SOR (resp. SSOR) preconditioning:

 k steps of SOR (resp. SSOR)

- Questions: Best ω? For preconditioning can take $\omega = 1$

 $$M = (D - E)D^{-1}(D - F)$$

Observe: $M = LU + R$ with $R = ED^{-1}F$.

- Best k? $k = 1$ is rarely the best. Substantial difference in performance.
Iteration times versus k for SOR(k) preconditioned GMRES
Notation: $\text{NZ}(X) = \{(i,j) \mid X_{i,j} \neq 0\}$

Formal definition of ILU(0):

\[
A = LU + R
\]

$\text{NZ}(L) \cup \text{NZ}(U) = \text{NZ}(A)$

$r_{ij} = 0$ for $(i,j) \in \text{NZ}(A)$

Constructive definition: Compute the LU factorization of A but drop any fill-in in L and U outside of $\text{Struct}(A)$.

ILU factorizations are often based on i,k,j version of GE.
What is the IKJ version of GE?

Algorithm : 4. Gaussian Elimination – IKJ Variant

1. For $i = 2, \ldots, n$ Do:
2. For $k = 1, \ldots, i - 1$ Do:
3. $a_{ik} := a_{ik} / a_{kk}$
4. For $j = k + 1, \ldots, n$ Do:
5. $a_{ij} := a_{ij} - a_{ik} * a_{kj}$
6. EndDo
7. EndDo
8. EndDo
Accessed but not modified
Accessed and modified
Not accessed
ALGORITHM : 5

ILU(0)

For $i = 1, \ldots, N$ Do:

For $k = 1, \ldots, i - 1$ and if $(i, k) \in NZ(A)$ Do:

Compute $a_{ik} := a_{ik}/a_{kj}$

For $j = k + 1, \ldots$ and if $(i, j) \in NZ(A)$, Do:

compute $a_{ij} := a_{ij} - a_{ik}a_{k,j}$.

EndFor

EndFor

➤ When A is SPD then the ILU factorization = Incomplete Choleski factorization – IC(0). Meijerink and Van der Vorst [1977].
Pattern of ILU(0) for 5-point matrix. ’Stencil’ viewpoint
Stencil: local connectivity for a graph with a regular pattern.

Example: For 5-point matrix A each node is coupled with its East, West, North, South neighbors (when they exist).

Interpret fill-ins in the ILU(0) and ILU(1) preconditioners using only stencils/
More than anything else, what determines the convergence of an iterative method is the distribution of the eigenvalues of the matrix.

Need to consider eigenvalues of preconditioned matrix $M^{-1}A$

Clustering around 1 results in fast convergence

If A is SPD with only k distinct eigenvalues, what is the minimal polynomial p of A? Show that $p(0) \neq 0$. How many steps will it take CG to converge for any linear system $Ax = b$?
Higher order ILU factorization

- Higher accuracy incomplete Choleski: for regularly structured problems, IC(\(p\)) allows \(p\) additional diagonals in \(L\).
- Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

Initially \(\text{Lev}_{ij} = \begin{cases} 0 & \text{for } a_{ij} \neq 0 \\ \infty & \text{for } a_{ij} = 0 \end{cases} \)

At a given step \(i\) of Gaussian elimination:

\[
\text{Lev}_{ij} = \min\{\text{Lev}_{ij}; \text{Lev}_{ik} + \text{Lev}_{kj} + 1\}
\]
Algorithm 6: ILU(p)

For $i = 2, N$ Do
 For each $k = 1, \ldots, i - 1$ and if $a_{ij} \neq 0$ do
 Compute $a_{ik} := a_{ik} / a_{jj}$
 Compute $a_{i,*} := a_{i,*} - a_{ik} a_{k,*}$.
 Update the levels of $a_{i,*}$
 In row i: if $\text{lev}(a_{ij}) > p$ set $a_{ij} = 0$
 EndFor
EndFor

- Algorithm can be split into symbolic and a numerical phase.
- Higher level of fill-in \rightarrow typically fewer iterations - but more expensive set-up cost
Augmented pattern used for $\text{ILU}(1) = \text{pattern of } L U \text{ from } \text{ILU}(0)$
ILU with threshold: ILUT(k, ϵ)

ILU(p) factorizations are based on structure only and not numerical values

- potential problems for non M-matrices.

Alternative: ILU with Threshold, ILUT

- During each i-th step in GE (i, k, j version), discard pivots or fill-ins whose value is below $\epsilon \|row_i(A)\|$.

- Once the i-th row of $L + U$, (L-part + U-part) is computed retain only the k largest elements in both parts.

- Easy to implement and can be made quite inexpensive.
Other preconditioners

Many other techniques have been developed:

- Approximate inverse methods
- Polynomial preconditioners
- Multigrid - type methods
- Incomplete LU based on Crout factorization
- Multi-elimination and multilevel ILU (ARMS)