Solution of eigenvalue problems

- Introduction - motivation
- Projection methods for eigenvalue problems
- Subspace iteration, The symmetric Lanczos algorithm
- Nonsymmetric Lanczos procedure;
- Implicit restarts
- Harmonic Ritz values, Jacobi-Davidson's method
- Text: Chaps. 4 to 8 of:
https://www-users.cse.umn.edu/~saad/eig_book_2ndEd.pdf

Background. New applications in data analytics

> Machine learning problems often require a (partial) Singular Value Decomposition -
> Somewhat different issues in this case:

- Very large matrices, update the SVD
- Compute dominant singular values/vectors
- Many problems of approximating a matrix (or a tensor) by one of lower rank (Dimension reduction, ...)
> But: Methods for computing SVD often based on those for standard eigenvalue problems

Background. Origins of Eigenvalue Problems

- Structural Engineering [$K u=\lambda M u$] (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
> Large eigenvalue problems in quantum chemistry use up biggest portion of the time in supercomputer centers

14-2

Background. The Problem (s)

> Standard eigenvalue problem:

$$
A x=\lambda x
$$

Often: \boldsymbol{A} is symmetric real (or Hermitian complex)
$>$ Generalized problem $A x=\lambda B x \quad$ Often: B is symmetric positive definite, A is symmetric or nonsymmetric
> Quadratic problems:
> Nonlinear eigenvalue problems (NEVP)
$\left(A+\lambda B+\lambda^{2} C\right) u=0$
$\left[A_{0}+\lambda B_{0}+\sum_{i=1}^{n} f_{i}(\lambda) A_{i}\right] u=0$
$>$ General form of NEVP $\quad A(\lambda) x=0$
> Nonlinear eigenvector problems:

$$
\left[A+\lambda B+F\left(u_{1}, u_{2}, \cdots, u_{k}\right)\right] u=0
$$

What to compute:

- A few λ_{i} 's with smallest or largest real parts;
- All λ_{i} 's in a certain region of \mathbb{C};
- A few of the dominant eigenvalues;
- All λ_{i} 's (rare).

Background: The main tools

Projection process:

(a) Build a 'good' subspace $K=\operatorname{span}(V)$;
(b) get approximate eigenpairs by a Rayleigh-Ritz process:
$\tilde{\lambda}, \tilde{u} \in K$ satisfy: $(A-\tilde{\lambda} I) \tilde{u} \perp K \longrightarrow$

$$
V^{H}(A-\tilde{\lambda} I) V y=0
$$

> $\tilde{\lambda}=$ Ritz value, $\tilde{u}=V y=$ Ritz vector
> Two common choices for K :

1) Power subspace $K=\operatorname{span}\left\{\boldsymbol{A}^{k} \boldsymbol{X}_{0}\right\}$; or span $\left\{P_{k}(\boldsymbol{A}) \boldsymbol{X}_{0}\right\}$;
2) Krylov subspace $K=\operatorname{span}\left\{v, A v, \cdots, A^{k-1} v\right\}$

Large eigenvalue problems in applications

Some applications require the computation of a large number of eigenvalues and vectors of very large matrices.
> Density Functional Theory in electronic structure calculations: 'ground states'
> Excited states involve transitions and invariably lead to much more complex computations. \rightarrow Large matrices, ${ }^{*}$ many* eigen-pairs to compute

14-6

Background. The main tools (cont)
Shift-and-invert: If we want eigenvalues near σ, replace A by $(A-\sigma I)^{-1}$. Example: power method: $\boldsymbol{v}_{j}=\boldsymbol{A} \boldsymbol{v}_{j-1} /$ scaling replaced by

$$
v_{j}=\frac{(A-\sigma I)^{-1} v_{j-1}}{\text { scaling }}
$$

$>$ Works well for computing a few eigenvalues near $\sigma /$
$>$ Used in commercial package NASTRAN (for decades!)
$>$ Requires factoring $(A-\sigma I)$ (or $(A-\sigma B)$ in generalized case.) But convergence will be much faster.
$>$ A solve each time - Factorization done once (ideally).

Background. The main tools (cont)

Deflation:

$>$ Once eigenvectors converge remove them from the picture (e.g., with power method, second largest becomes largest eigenvalue after deflation).

Restarting Strategies

Restart projection process by using information gathered in previous steps
> ALL available methods use some combination of these ingredients.
[e.g. ARPACK: Arnoldi/Lanczos + 'implicit restarts' + shift-and-invert (option).]

Projection Methods for Eigenvalue Problems

General formulation:

> Projection method onto K orthogonal to L
> Given: Two subspaces K and L of same dimension.
$>$ Find: $\tilde{\lambda}, \tilde{u}$ such that: $\quad \tilde{\lambda} \in \mathbb{C}, \tilde{u} \in K ; \quad(\tilde{\lambda} I-A) \tilde{u} \perp L$

Two types of methods:

> Orthogonal projection methods: situation when $L=K$
$>$ Oblique projection methods: When $L \neq \boldsymbol{K}$.

Current state-of-the art in eigensolvers

> Eigenvalues at one end of the spectrum:

- Subspace iteration + filtering [e.g. FEAST, Cheb,...]
- Lanczos+variants (no restart, thick restart, implicit restart, Davidson,..), e.g., ARPACK code, PRIMME.
- Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]
- + Many others - more or less related to above
> 'Interior' eigenvalue problems (middle of spectrum):
-Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g., NASTRAN
- Rational filtering [FEAST, Sakurai et al.,..]

14-10
Rayleigh-Ritz projection
Given: a subspace \boldsymbol{X} known to contain good approximations to eigenvectors of \boldsymbol{A}.
Question: How to extract good approximations to eigenvalues/ eigenvec tors from this subspace?

Answer: Rayleigh Ritz process.

Let $\boldsymbol{Q}=\left[q_{1}, \ldots, q_{m}\right]$ an orthonormal basis of \boldsymbol{X}. Then write an approximation in the form $\tilde{u}=Q y$ and obtain y by writing

$$
Q^{H}(A-\tilde{\lambda} I) \tilde{u}=0 \quad>Q^{H} A Q y=\tilde{\lambda} y
$$

Procedure:

1. Obtain an orthonormal basis of X
2. Compute $C=Q^{H} A Q$ (an $m \times m$ matrix)
3. Obtain Schur factorization of $C, C=\boldsymbol{Y} \boldsymbol{R} Y^{H}$
4. Compute $\tilde{U}=Q Y$

Property: if \boldsymbol{X} is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.
 implies $z=0$ and therefore $(A-\tilde{\lambda} I) u=0$.
$>$ Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Subspace Iteration

$>$ Original idea: projection technique onto a subspace if the form $\boldsymbol{Y}=\boldsymbol{A}^{k} \boldsymbol{X}$
$>$ In practice: Replace A^{k} by suitable polynomial [Chebyshev]
Advantages: Easy to implement (in symmetric case);

- Easy to analyze;

Disadvantage: Slow.
$>$ Often used with polynomial acceleration: $A^{k} X$ replaced by $C_{k}(A) X$. Typically $C_{k}=$ Chebyshev polynomial.

14-14

- eigProj

THEOREM: Let $S_{0}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and assume that S_{0} is such that the vectors $\left\{\boldsymbol{P} \boldsymbol{x}_{i}\right\}_{i=1, \ldots, m}$ are linearly independent where \boldsymbol{P} is the spectral projector associated with $\lambda_{1}, \ldots, \boldsymbol{\lambda}_{m}$. Let \mathcal{P}_{k} the orthogonal projector onto the subspace $S_{k}=\operatorname{span}\left\{X_{k}\right\}$. Then for each eigenvector u_{i} of $A, i=$ $1, \ldots, m$, there exists a unique vector s_{i} in the subspace S_{0} such that $P s_{i}=$ u_{i}. Moreover, the following inequality is satisfied

$$
\begin{equation*}
\left\|\left(I-\mathcal{P}_{k}\right) u_{i}\right\|_{2} \leq\left\|u_{i}-s_{i}\right\|_{2}\left(\left|\frac{\lambda_{m+1}}{\lambda_{i}}\right|+\epsilon_{k}\right)^{k} \tag{1}
\end{equation*}
$$

where ϵ_{k} tends to zero as k tends to infinity.

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

$$
\boldsymbol{K}_{m}\left(\boldsymbol{A}, \boldsymbol{v}_{1}\right)=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{A} v_{1}, \cdots, \boldsymbol{A}^{m-1} \boldsymbol{v}_{1}\right\}
$$

- The most important class of iterative methods.
- Many variants exist depending on the subspace L.

Simple properties of K_{m} [$\mu \equiv$ deg. of minimal polynomial of v_{1}.]

- $\boldsymbol{K}_{m}=\left\{p(\boldsymbol{A}) \boldsymbol{v}_{1} \mid \boldsymbol{p}=\right.$ polynomial of degree $\left.\leq m-1\right\}$
- $\boldsymbol{K}_{m}=\boldsymbol{K}_{\mu}$ for all $\boldsymbol{m} \geq \boldsymbol{\mu}$. Moreover, \boldsymbol{K}_{μ} is invariant under \boldsymbol{A}.
$\bullet \operatorname{dim}\left(K_{m}\right)=m$ iff $\mu \geq m$.
14-17

Result of Arnoldi's algorithm

Let

$$
\bar{H}_{m}=\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
& x & x & x & x \\
& & x & x & x \\
& & & x & x \\
& & & & x
\end{array}\right] ; \quad H_{m}=\bar{H}_{m}(1: m, 1: m)
$$

1. $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ orthonormal basis of K_{m}.
2. $A V_{m}=V_{m+1} \overline{\boldsymbol{H}}_{m}=V_{m} H_{m}+h_{m+1, m} \boldsymbol{v}_{m+1} e_{m}^{T}$
3. $\boldsymbol{V}_{m}^{T} \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{H}_{m} \equiv \overline{\boldsymbol{H}}_{m}$ - last row.

Arnoldi's Algorithm

$>$ Goal: to compute an orthogonal basis of \boldsymbol{K}_{m}.
$>$ Input: Initial vector v_{1}, with $\left\|v_{1}\right\|_{2}=1$ and m.

ALGORITHM : 1. Arnoldi's procedure

$$
\begin{aligned}
& \text { For } j=1, \ldots, m \text { do } \\
& \quad \text { Compute } w:=A v_{j} \\
& \quad \text { For } i=1, \ldots, j, \text { do } \quad\left\{\begin{array}{l}
h_{i, j}:=\left(w, v_{i}\right) \\
w:=w-h_{i, j} v_{i}
\end{array}\right. \\
& \quad h_{j+1, j}=\|w\|_{2} ; v_{j+1}=w / h_{j+1, j}
\end{aligned}
$$

-14-18

Appliaction to eigenvalue problems
$>$ Write approximate eigenvector as $\tilde{u}=V_{m} y+$ Galerkin condition

$$
(A-\tilde{\lambda} I) V_{m} y \perp \mathcal{K}_{m} \rightarrow V_{m}^{H}(A-\tilde{\lambda} I) V_{m} y=0
$$

> Approximate eigenvalues are eigenvalues of \boldsymbol{H}_{m}

$$
\boldsymbol{H}_{\boldsymbol{m}} y_{j}=\tilde{\lambda}_{j} y_{j}
$$

Associated approximate eigenvectors are

$$
\tilde{u}_{j}=V_{m} y_{j}
$$

Typically a few of the outermost eigenvalues will converge first.

Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is necessary
> Restarted Arnoldi for computing rightmost eigenpair:

ALGORITHM : 2. Restarted Arnoldi

1. Start: Choose an initial vector v_{1} and a dimension m.
2. Iterate: Perform m steps of Arnoldi's algorithm.
3. Restart: Compute the approximate eigenvector $u_{1}^{(m)}$
associated with the rightmost eigenvalue $\lambda_{1}^{(m)}$.
If satisfied stop, else set $v_{1} \equiv u_{1}^{(m)}$ and goto 2.

Example:

Small Markov Chain matrix [Mark(10) , dimension = 55]. Restarted Arnoldi procedure for computing the eigenvector associated with the eigenvalue with algebraically largest real part. We use $m=10$.

\boldsymbol{m}	$\Re(\boldsymbol{\lambda})$	$\Im(\boldsymbol{\lambda})$	Res. Norm
10	$0.9987435899 \mathrm{D}+00$	0.0	$0.246 \mathrm{D}-01$
20	$0.9999523324 \mathrm{D}+00$	0.0	$0.144 \mathrm{D}-02$
30	$0.1000000368 \mathrm{D}+01$	0.0	$0.221 \mathrm{D}-04$
40	$0.1000000025 \mathrm{D}+01$	0.0	$0.508 \mathrm{D}-06$
50	$0.9999999996 \mathrm{D}+00$	0.0	$0.138 \mathrm{D}-07$

Deflation
$>$ Very useful in practice.
> Different forms: locking (subspace iteration), selective orthogonalization (Lanczos), Schur deflation, ...

A little background Consider Schur canonical form $A=U R U^{H}$

where U is a (complex) upper triangular matrix.
$>$ Vector columns u_{1}, \ldots, u_{n} called Schur vectors.
> Note: Schur vectors are not unique. In particular, they depend on the order of the eigenvalues

Wiedlandt Deflation: Assume we have computed a right eigenpair λ_{1}, u_{1} Wielandt deflation considers eigenvalues of

$$
A_{1}=A-\sigma u_{1} v^{H}
$$

Note:

$$
\Lambda\left(A_{1}\right)=\left\{\lambda_{1}-\sigma, \lambda_{2}, \ldots, \lambda_{n}\right\}
$$

Wielandt deflation preserves u_{1} as an eigenvector as well all the left eigenvectors not associated with λ_{1}.
$>$ An interesting choice for v is to take simply $v=u_{1}$. In this case Wielandt deflation preserves Schur vectors as well.
> Can apply above procedure successively.

ALGORITHM:3. Explicit Deflation

1. $A_{0}=A$
2. For $j=0 \ldots \mu-1$ Do:

Compute a dominant eigenvector of \boldsymbol{A}_{j} Define $A_{j+1}=A_{j}-\sigma_{j} u_{j} u_{j}^{H}$
End
$>$ Computed u_{1}, u_{2}.,.. form a set of Schur vectors for \boldsymbol{A}.
> In Arnoldi: Accumulate each new converged eigenvector in columns 1, 2,
$3, \ldots$ ['locked' set of eigenvectors.] + maintain orthogonality
> Alternative: implicit deflation (within a procedure such as Arnoldi).

Thus, for $k=2$:

$$
V_{m}=[\underbrace{\text { active }}_{\underbrace{}_{\text {Locked }}, v_{2}, \overbrace{3}, \ldots, v_{m}}]
$$Similar techniques in Subspace iteration [G. Stewart's SRRIT]Run example with restarted Arnoldi with Deflation in testArnRD

Eig.	Mat-Vec's	$\Re e(\boldsymbol{\lambda})$	$\Im m(\boldsymbol{\lambda})$	Res. Norm
2	60	0.9370509474	0.0	$0.870 \mathrm{D}-03$
	69	0.9371549617	0.0	$0.175 \mathrm{D}-04$
	78	0.9371501442	0.0	$0.313 \mathrm{D}-06$
	87	0.9371501564	0.0	$0.490 \mathrm{D}-08$
3	96	0.8112247133	0.0	$0.210 \mathrm{D}-02$
	104	0.8097553450	0.0	$0.538 \mathrm{D}-03$
	112	0.8096419483	0.0	$0.874 \mathrm{D}-04$
	\vdots	\vdots	\vdots	\vdots
	152	0.8095717167	0.0	$0.444 \mathrm{D}-07$

For $k=1, \ldots$ NEV do: /* Eigenvalue loop */

1. For $j=k, k+1, \ldots, m$ do: /* Arnoldi loop*/

- Compute $w:=A v_{j}$.
- Orthonormalize w against $v_{1}, v_{2}, \ldots, v_{j} \rightarrow v_{j+1}$

2. Compute next approximate eigenpair $\tilde{\lambda}, \tilde{u}$.
3. Orthonormalize \tilde{u} against $v_{1}, \ldots, v_{j}>$ Result $=\tilde{s}=$ approximate Schur vector.
4. Define $v_{k}:=\tilde{s}$.
5. If approximation not satisfactory go to 1 .
6. Else define $h_{i, k}=\left(A v_{k}, v_{i}\right), i=1, . ., k$,
$\xlongequal{14-26}$ - eigProj
Example: Matrix Mark(10) - small Markov chain matrix ($N=55$).
$>$ Continued from earlier example. [First eigenpair by iterative Arnoldi with $m=10$] We now compute next 2 eigenvalues

Hermitian case: The Lanczos Algorithm

> The Hessenberg matrix becomes tridiagonal :

$$
A=A^{H} \quad \text { and } \quad V_{m}^{H} A V_{m}=H_{m} \quad \rightarrow H_{m}=H_{m}^{H} \longrightarrow
$$

$\boldsymbol{H}_{m}=\left[\begin{array}{cccccc}\alpha_{1} & \boldsymbol{\beta}_{2} & & & & \\ \boldsymbol{\beta}_{2} & \boldsymbol{\alpha}_{2} & \boldsymbol{\beta}_{3} & & & \\ & \boldsymbol{\beta}_{3} & \alpha_{3} & \boldsymbol{\beta}_{4} & & \\ & & \cdot & \cdot & \cdot & \\ & & & \cdot & \cdot & \cdot \\ & \\ & \boldsymbol{\beta}_{m} & \alpha_{m}\end{array}\right] \begin{aligned} & \text { Consequence: } \\ & \text { 3-term recurrence: } \\ & \boldsymbol{\beta}_{j+1} \boldsymbol{v}_{\boldsymbol{j + 1}}=\boldsymbol{A} \boldsymbol{v}_{\boldsymbol{j}}-\boldsymbol{\alpha}_{\boldsymbol{j}} \boldsymbol{v}_{\boldsymbol{j}}-\boldsymbol{\beta}_{\boldsymbol{j}} \boldsymbol{v}_{\boldsymbol{j}-1} \\ & \text { Hermitian matrix + Arnoldi } \rightarrow \text { Hermitian Lanczos }\end{aligned}$

Lanczos with reorthogonalization

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair converges. It indicates loss of linear indedependence of the $v_{i} \mathrm{~s}$. When orthogonality is lost, then several copies of the same eigenvalue start appearing.

Forms of Re-orthogonalization

Full - reorthogonalize v_{j+1} against all previous v_{i} 's every time.
Partial - reorthogonalize v_{j+1} against all previous v_{i} 's only when needed
Selective - reorthogonalize $\boldsymbol{v}_{\boldsymbol{j + 1}}$ against computed eigenvectors
None - Do not reorthogonalize - but take measures to deal with 'spurious' eigenvalues.

ALGORITHM:4. Lanczos

$>$ In theory v_{i} 's defined by 3-term recurrence are orthogonal.
> However: in practice severe loss of orthogonality;

Partial reorthogonalization

> Partial reorthogonalization: reorthogonalize only when deemed necessary.
$>$ Main question is when?
> Uses an inexpensive recurrence relation
> Work done in the 80's [Parlett, Simon, and co-workers] + more recent work [Larsen, '98]
> Package: PROPACK [Larsen] V 1: 2001, most recent: V 2.1 (Apr. 05)
> Often, need for reorthogonalization not too strong
\qquad

The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly $\quad \boldsymbol{\lambda}_{1} \leq \boldsymbol{\lambda}_{2} \leq \cdots \leq \boldsymbol{\lambda}_{n}$
> Orthogonal projection method onto \boldsymbol{K}_{m};
> To derive error bounds, use the Courant characterization

$$
\begin{aligned}
& \tilde{\lambda}_{1}=\min _{u \in K, u \neq 0} \frac{(A u, u)}{(u, u)}=\frac{\left(A \tilde{u}_{1}, \tilde{u}_{1}\right)}{\left(\tilde{u}_{1}, \tilde{u}_{1}\right)} \\
& \tilde{\lambda}_{j}=\min _{\substack{u \in K, u \neq 0 \\
u \\
u \\
\hline u_{1}, \ldots, \tilde{u}_{j-1}}} \frac{(A u, u)}{(u, u)}=\frac{\left(A \tilde{u}_{j}, \tilde{u}_{j}\right)}{\left(\tilde{u}_{j}, \tilde{u}_{j}\right)}
\end{aligned}
$$

Bounds for λ_{1} easy to find - similar to linear systems.
$>$ Ritz values approximate eigenvalues of \boldsymbol{A} inside out:
Run testLan to see an illustration

14-34

The Lanczos biorthogonalization $\left(A^{H} \neq A\right.$)

ALGORITHM : 5. Lanczos bi-orthogonalization

Theorem [Kaniel, Paige, YS]. Let $\gamma_{i}=\frac{\lambda_{i+1}-\lambda_{i}}{\lambda_{N}-\lambda_{i+1}}, \kappa_{i}^{(m)}=\prod_{j<i} \frac{\lambda_{j}^{(m)}-\lambda_{N}}{\lambda_{j}^{(m)}-\lambda_{i}}$ Then:

$$
0 \leq \lambda_{i}^{(m)}-\lambda_{i} \leq\left(\lambda_{N}-\lambda_{1}\right)\left[\kappa_{i}^{(m)} \frac{\tan \angle\left(v_{i}, u_{i}\right)}{T_{m-i}\left(1+2 \gamma_{i}\right)}\right]^{2}
$$

```
Choose two vectors \(v_{1}, w_{1}\) such that \(\left(v_{1}, w_{1}\right)=1\).
```

Choose two vectors v_{1}, w_{1} such that $\left(v_{1}, w_{1}\right)=1$.
Set $\beta_{1}=\delta_{1} \equiv 0, w_{0}=v_{0} \equiv 0$
Set $\beta_{1}=\delta_{1} \equiv 0, w_{0}=v_{0} \equiv 0$
For $j=1,2, \ldots, m$ Do:
For $j=1,2, \ldots, m$ Do:
$\alpha_{j}=\left(A v_{j}, w_{j}\right)$
$\alpha_{j}=\left(A v_{j}, w_{j}\right)$
$\hat{\boldsymbol{v}}_{j+1}=\boldsymbol{A} \boldsymbol{v}_{j}-\boldsymbol{\alpha}_{j} \boldsymbol{v}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{v}_{j-1}$
$\hat{\boldsymbol{v}}_{j+1}=\boldsymbol{A} \boldsymbol{v}_{j}-\boldsymbol{\alpha}_{j} \boldsymbol{v}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{v}_{j-1}$
$\hat{w}_{j+1}=A^{T} w_{j}-\alpha_{j} w_{j}-\delta_{j} w_{j-1}$
$\hat{w}_{j+1}=A^{T} w_{j}-\alpha_{j} w_{j}-\delta_{j} w_{j-1}$
$\delta_{j+1}=\left|\left(\hat{\boldsymbol{v}}_{j+1}, \hat{w}_{j+1}\right)\right|^{1 / 2}$. If $\delta_{j+1}=0$ Stop
$\delta_{j+1}=\left|\left(\hat{\boldsymbol{v}}_{j+1}, \hat{w}_{j+1}\right)\right|^{1 / 2}$. If $\delta_{j+1}=0$ Stop
$\boldsymbol{\beta}_{j+1}=\left(\hat{\boldsymbol{v}}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1}$
$\boldsymbol{\beta}_{j+1}=\left(\hat{\boldsymbol{v}}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1}$
$\boldsymbol{w}_{j+1}=\hat{\boldsymbol{w}}_{j+1} / \boldsymbol{\beta}_{j+1}$
$\boldsymbol{w}_{j+1}=\hat{\boldsymbol{w}}_{j+1} / \boldsymbol{\beta}_{j+1}$
$\boldsymbol{v}_{j+1}=\hat{\boldsymbol{v}}_{j+1} / \delta_{j+1}$
$\boldsymbol{v}_{j+1}=\hat{\boldsymbol{v}}_{j+1} / \delta_{j+1}$

1. EndDo
```
1. EndDo
```

Builds a pair of biorthogonal bases for the two subspaces

$$
\mathcal{K}_{m}\left(A, v_{1}\right) \quad \text { and } \quad \mathcal{K}_{m}\left(A^{H}, w_{1}\right)
$$

$>$ Many choices for $\delta_{j+1}, \beta_{j+1}$ in lines 7 and 8 . Only constraint:

$$
\delta_{j+1} \boldsymbol{\beta}_{j+1}=\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)
$$

Let

$$
T_{m}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \\
\delta_{2} & \alpha_{2} & \beta_{3} & & \\
& \cdot & \cdot & \cdot & \\
& & \delta_{m-1} & \alpha_{m-1} & \beta_{m} \\
& & & \delta_{m} & \alpha_{m}
\end{array}\right]
$$

$>v_{i} \in \mathcal{K}_{m}\left(A, v_{1}\right)$ and $w_{j} \in \mathcal{K}_{m}\left(A^{T}, w_{1}\right)$.
$\xlongequal{14-37}$ - eigProj
$>$ If θ_{j}, y_{j}, z_{j} are, respectively an eigenvalue of T_{m}, with associated right and left eigenvectors y_{j} and z_{j} respectively, then corresponding approximations for \boldsymbol{A} are

[Note: terminology is abused slightly - Ritz values and vectors normally refer to Hermitian cases.]

If the algorithm does not break down before step m, then the vectors $v_{i}, i=1, \ldots, m$, and $w_{j}, j=1, \ldots, m$, are biorthogonal, i.e.,

$$
\left(v_{j}, w_{i}\right)=\delta_{i j} \quad 1 \leq i, j \leq m
$$

Moreover, $\left\{v_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A, v_{1}\right)$ and $\left\{w_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A^{H}, w_{1}\right)$ and

$$
\begin{aligned}
& A V_{m}=V_{m} T_{m}+\delta_{m+1} v_{m+1} e_{m}^{H} \\
& A^{H} W_{m}=W_{m} T_{m}^{H}+\bar{\beta}_{m+1} w_{m+1} e_{m}^{H} \\
& W_{m}^{H} A V_{m}=T_{m}
\end{aligned}
$$

14-38

Advantages and disadvantages

Advantages:

$>$ Nice three-term recurrence - requires little storage in theory.
$>$ Computes left and a right eigenvectors at the same time

Disadvantages:

> Algorithm can break down or nearly break down.
$>$ Convergence not too well understood. Erratic behavior
$>$ Not easy to take advantage of the tridiagonal form of T_{m}.Explore the litterature on "Look-ahead Lanczos" which aims at resolving some of these issues.

