Preconditioning eigenvalue problems and other approaches

- Preconditioning eigenvalue problems: Shift-invert, polynomial
- Polyninial filters, Implicit restarts
- The Davidson approach
- Jacobi-Davidson
- Harmonic Ritz values

Preconditioning eigenvalue problems

$>$ Goal: To extract good approximations to add to a subspace in a projection process. Result: faster convergence.
> Best known technique: Shift-and-invert; Work with

$$
B=(A-\sigma I)^{-1}
$$

> Some success with polynomial preconditioning [Chebyshev iteration / least-squares polynomials]. Work with

$$
B=p(A)
$$

> Above preconditioners preserve eigenvectors. Other methods (Davidson) use a more general preconditioner M.

Shift-and-invert preconditioning

Main idea: to use Arnoldi, or Lanczos, or subspace iteration for the matrix $B=(A-\sigma I)^{-1}$. The matrix B need not be computed explicitly. Each time we need to apply B to a vector we solve a system with B.
$>$ Factor $B=A-\sigma I=L U$. Then each solution $B x=y$ requires solving $L z=y$ and $U x=z$.

How to deal with complex shifts?

If \boldsymbol{A} is complex need to work in complex arithmetic.
$>$ If A is real, then instead of $(\boldsymbol{A}-\sigma I)^{-1}$ use

$$
\Re e(A-\sigma I)^{-1}=\frac{1}{2}\left[(A-\sigma I)^{-1}+(A-\bar{\sigma} I)^{-1}\right]
$$

Preconditioning by polynomials

Main idea:
Iterate with $\boldsymbol{p}(\boldsymbol{A})$ instead of \boldsymbol{A} in Arnoldi or Lanczos,..
> Used very early on in subspace iteration [Rutishauser, 1959.]
> Usually not as reliable as Shift-and-invert techniques but less demanding in terms of storage.

Question: How to find a good polynomial (dynamically)?
1 Use of Chebyshev polynomials over ellipses
2 Use polynomials based on Leja points
Approaches:
3 Least-squares polynomials over polygons
4 Polynomials from previous Arnoldi decompositions

Polynomial filters and implicit restart

Goal: exploit the Arnoldi procedure to apply polynomial filter of the form: $p(t)=\left(t-\theta_{1}\right)\left(t-\theta_{2}\right) \ldots\left(t-\theta_{q}\right)$

Assume

$$
A V_{m}=V_{m} H_{m}+\hat{v}_{m+1} e_{m}^{T}
$$

and consider first factor: $\left(t-\theta_{1}\right)$

$$
\left(A-\theta_{1} I\right) V_{m}=V_{m}\left(H_{m}-\theta_{1} I\right)+\hat{v}_{m+1} e_{m}^{T}
$$

Let $H_{m}-\theta_{1} I=Q_{1} \boldsymbol{R}_{1}$. Then,

$$
\begin{aligned}
\left(A-\theta_{1} I\right) V_{m} & =V_{m} Q_{1} R_{1}+\hat{v}_{m+1} e_{m}^{T} \rightarrow \\
\left(A-\theta_{1} I\right)\left(V_{m} Q_{1}\right) & =\left(V_{m} Q_{1}\right) R_{1} Q_{1}+\hat{v}_{m+1} e_{m}^{T} Q_{1} \rightarrow \\
A\left(V_{m} Q_{1}\right) & =\left(V_{m} Q_{1}\right)\left(R_{1} Q_{1}+\theta_{1} I\right)+\hat{v}_{m+1} e_{m}^{T} Q_{1}
\end{aligned}
$$

Notation:
$R_{1} Q_{1}+\theta_{1} I \equiv H_{m}^{(1)} ; \quad\left(b_{m+1}^{(1)}\right)^{T} \equiv e_{m}^{T} Q_{1} ; \quad V_{m} Q_{1} \equiv V_{m}^{(1)}$

$$
A V_{m}^{(1)}=V_{m}^{(1)} H_{m}^{(1)}+v_{m+1}\left(b_{m+1}^{(1)}\right)^{T}
$$

$>$ Note that $\boldsymbol{H}_{m}^{(1)}$ is upper Hessenberg.
$>$ Similar to an Arnoldi decomposition.

Observe:

$>R_{1} Q_{1}+\theta_{1} I \equiv$ matrix resulting from one step of the QR algorithm with shift θ_{1} applied to \boldsymbol{H}_{m}.
$>$ First column of $V_{m}^{(1)}$ is a multiple of $\left(A-\theta_{1} I\right) v_{1}$.
$>$ The columns of $V_{m}^{(1)}$ are orthonormal.

Can now apply second shift in same way:

$$
\left(A-\theta_{2} I\right) V_{m}^{(1)}=V_{m}^{(1)}\left(H_{m}^{(1)}-\theta_{2} I\right)+v_{m+1}\left(b_{m+1}^{(1)}\right)^{T} \rightarrow
$$

Similar process: $\left(H_{m}^{(1)}-\theta_{2} I\right)=Q_{2} R_{2}$ then $\times Q_{2}$ to the right:

$$
\left(A-\theta_{2} I\right) V_{m}^{(1)} Q_{2}=\left(V_{m}^{(1)} Q_{2}\right)\left(R_{2} Q_{2}\right)+v_{m+1}\left(b_{m+1}^{(1)}\right)^{T} Q_{2}
$$

$$
A V_{m}^{(2)}=V_{m}^{(2)} H_{m}^{(2)}+v_{m+1}\left(b_{m+1}^{(2)}\right)^{T}
$$

Now:

$$
\text { 1st column of } \begin{aligned}
V_{m}^{(2)} & =\text { scalar } \times\left(A-\theta_{2} I\right) v_{1}^{(1)} \\
& =\text { scalar } \times\left(A-\theta_{2} I\right)\left(A-\theta_{1} I\right) v_{1}
\end{aligned}
$$

$>$ Note that

$$
\left(b_{m+1}^{(2)}\right)^{T}=e_{m}^{T} Q_{1} Q_{2}=\left[0,0, \cdots, 0, \eta_{1}, \eta_{2}, \eta_{3}\right]
$$

$>$ Let: $\hat{\boldsymbol{V}}_{m-2}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m-2}\right]$ consist of first $m-2$ columns of $V_{m}^{(2)}$ and $\hat{H}_{m-2}=H_{m}(1: m-2,1: m-2)$. Then

$$
\begin{aligned}
A \hat{\boldsymbol{V}}_{m-2} & =\hat{\boldsymbol{V}}_{m-2} \hat{\boldsymbol{H}}_{m-2}+\hat{\boldsymbol{\beta}}_{m-1} \hat{\boldsymbol{v}}_{m-1} e_{m}^{T} \quad \text { with } \\
\hat{\boldsymbol{\beta}}_{m-1} \hat{\boldsymbol{v}}_{m-1} & \equiv \eta_{1} \boldsymbol{v}_{m+1}+h_{m-1, m-2}^{(2)} \boldsymbol{v}_{m-1}^{(2)} \quad\left\|\hat{\boldsymbol{v}}_{m-1}\right\|_{2}=1
\end{aligned}
$$

$>$ Result: An Arnoldi process of $m-2$ steps with the initial vector $p(A) v_{1}$.
> In other words: We know how to apply polynomial 'filtering' via a form of the Arnoldi process, combined with the QR algorithm.

The Davidson approach

Goal: to use a more general preconditioner to introduce good new components to the subspace.
$>$ Ideal new vector would be eigenvector itself!
$>$ Next best thing: an approximation to $(A-\mu I)^{-1} r$ where
$r=(A-\mu I) z$, current residual.
$>$ Approximation written in the form $M^{-1} r$. Note that M can vary at every step if needed.

ALGORITHM : 1. Davidson's method $\left(A=A^{T}\right)$

1. Choose an initial unit vector v_{1}. Set $V_{1}=\left[v_{1}\right]$.
2. For $j=1, \ldots, m$ Do:
3. $\quad w:=\boldsymbol{A} \boldsymbol{v}_{j}$.
4.

Update $H_{j} \equiv V_{j}^{T} A V_{j}$
5. Compute the smallest eigenpair μ, y of \boldsymbol{H}_{j}.
6. $z:=V_{j} y \quad r:=A z-\mu z$
7. Test for convergence. If satisfied Return
8. Compute $t:=M_{j}^{-1} r$
9. Compute $V_{j+1}:=\operatorname{ORTHN}\left(\left[V_{j}, t\right]\right)$
10. EndDo
$>$ Note: Traditional Davidson uses diagonal preconditioning: $M_{j}=D-\sigma_{j} I$.
> Will work only for some matrices

Other options:

> Shift-and-invert using ILU [negatives: expensive + hard to parallelize.]
$>$ Filtering (by averaging)
> Filtering by using smoothers (multigrid style)
> Iterative solves [e.g., Jacobi-Davidson]

Jacobi-Davidson: Introduction via Newton's metod

Assumptions: $\quad M=A+E$ and $A z \approx \mu z$

Goal: to find an improved eigenpair $(\mu+\eta, z+v)$.
$>$ Write $A(z+v)=(\mu+\eta)(z+v)$ and neglect second order terms + rearrange

$$
(M-\mu I) v-\eta z=-r \quad \text { with } \quad r \equiv(A-\mu I) z
$$

> Unknowns: η and v.
> Underdertermined system. Need one constraint.
$>$ Add the condition: $w^{H} v=0$ for some vector w.

In matrix form:

$$
\left[\begin{array}{cc}
M-\mu I & -z \\
w^{H} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
\eta
\end{array}\right]=\left[\begin{array}{c}
-r \\
0
\end{array}\right]
$$

$>$ Eliminate v from second equation:

$$
\begin{aligned}
(M-\mu I) v-\eta z & =-r \\
w^{H}(M-\mu I)^{-1} z \cdot \eta & =w^{H}(M-\mu I)^{-1} r
\end{aligned}
$$

> Solution: [Olsen's method]

$$
\eta=\frac{w^{H}(M-\mu I)^{-1} r}{w^{H}(M-\mu I)^{-1} z} \quad v=-(M-\mu I)^{-1}(r-\eta z)
$$

When $M=A$, corresponds to Newton's method for solving

$$
\left\{\begin{aligned}
(A-\lambda I) u & =0 \\
w^{T} u & =\text { Constant }
\end{aligned}\right.
$$

Another characterization of the solution:
$v=-(M-\mu I)^{-1} r+\eta(M-\mu I)^{-1} z$, η such that $w^{H} v=0$

Alternative expression using projectors.

$>$ Let $P_{z}=$ projector in direction of z,
s.t. $P_{z} r=r$:

$$
P_{z}=I-\frac{z s^{H}}{s^{H} z} \quad \text { with } \quad s \perp r
$$

$>$ Similarly let P_{w} any projector that leaves v inchanged. Then Olsen's solution can be rwritten in mathematically equivalent form:

$$
\left[P_{z}(M-\mu I) P_{w}\right] v=-r \quad w^{H} v=0
$$

The Jacobi-Davidson approach

$>$ In orthogonal projection methods (e.g. Arnoldi) we have $r \perp z$
$>$ Also it is natural to take $w \equiv z$. Assume $\|z\|_{2}=1$
With the above assumptions, Olsen's correction equation is mathematically equivalent to finding v such that :

$$
\left(I-z z^{H}\right)(M-\mu I)\left(I-z z^{H}\right) v=-r \quad v \perp z
$$

> Main attraction: can use iterative method for the solution of the correction equation. (M-solves not explicitly required).

Harmonic Ritz values

Main idea: take $L=A K$ in projection process
In context of Arnoldi's method.
Write $\tilde{u}=V_{m} y$ then:

$$
(A-\tilde{\lambda} I) V_{m} y \perp\left\{A V_{m}\right\}
$$

Using $\boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{V}_{m+1} \underline{\boldsymbol{H}}_{m}>$

$$
\underline{\boldsymbol{H}}_{m}^{H} \boldsymbol{V}_{m+1}^{H}\left[\boldsymbol{V}_{m+1} \underline{\boldsymbol{H}}_{m} \boldsymbol{y}-\tilde{\lambda} \boldsymbol{V}_{m} \boldsymbol{y}\right]=0
$$

Notation: $\boldsymbol{H}_{\boldsymbol{m}}=\underline{\boldsymbol{H}_{m}}$ - last row. Then

$$
\underline{\boldsymbol{H}}_{m}^{H} \underline{\boldsymbol{H}}_{m} y-\tilde{\lambda} \boldsymbol{H}_{m}^{H} \boldsymbol{y}=0
$$

$$
\left(H_{m}^{H} H_{m}+h_{m+1, m}^{2} e_{m} e_{m}^{H}\right) y=\tilde{\lambda} H_{m}^{H} y
$$

Remark:

Assume \boldsymbol{H}_{m} is nonsingular and multiply both sides by $\boldsymbol{H}_{m}^{-\boldsymbol{H}}$. Then, the problem is equivalent to

$$
\left(H_{m}+z_{m} e_{m}^{H}\right) y=\tilde{\lambda} y
$$

with $z_{m}=h_{m+1, m}^{2} H_{m}^{-H} \boldsymbol{e}_{m}$.
$>$ Modified from $\boldsymbol{H}_{\boldsymbol{m}}$ only in the last column.

Implementation within Davidson framework

> Slight varation to standard Davidson: Introduce $z_{i}=M_{i}^{-1} r_{i}$ to subspace. Proceed as in FGMRES: $\boldsymbol{v}_{j+1}=\operatorname{Orthn}\left(A z_{j}, V_{j}\right)$.
$>$ From Gram-Schmidt process: $A z_{j}=\sum_{i=1}^{j+1} h_{i j} v_{i}$
> Hence the relation

$$
A Z_{m}=\boldsymbol{V}_{\boldsymbol{m}+1} \overline{\boldsymbol{H}}_{\boldsymbol{m}}
$$

Approximation: $\boldsymbol{\lambda}, \tilde{\boldsymbol{u}}=\boldsymbol{Z}_{\boldsymbol{m}} \boldsymbol{y}$
Galerkin Condition: $r \perp A Z_{m}$ gives the generalized problem

$$
\overline{\boldsymbol{H}}_{m}^{H} \overline{\boldsymbol{H}}_{m} \boldsymbol{y}=\lambda \overline{\boldsymbol{H}}_{m}^{H} \boldsymbol{V}_{m+1}^{H} Z_{m} \boldsymbol{y}
$$

