
Preconditioning eigenvalue problems and other approaches

• Preconditioning eigenvalue problems: Shift-invert, polynomial

• Polyninial filters, Implicit restarts

• The Davidson approach

• Jacobi-Davidson

• Harmonic Ritz values

Preconditioning eigenvalue problems

ä Goal: To extract good approximations to add to a subspace in a
projection process. Result: faster convergence.

ä Best known technique: Shift-and-invert; Work with

B = (A− σI)−1

ä Some success with polynomial preconditioning [Chebyshev iteration /
least-squares polynomials]. Work with

B = p(A)

ä Above preconditioners preserve eigenvectors. Other methods (Davidson)
use a more general preconditioner M .
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Shift-and-invert preconditioning

Main idea: to use Arnoldi, or Lanczos, or subspace iteration for the matrix
B = (A−σI)−1. The matrixB need not be computed explicitly. Each time
we need to apply B to a vector we solve a system with B.

ä Factor B = A− σI = LU . Then each solution Bx = y requires solving
Lz = y and Ux = z.

How to deal with complex shifts?

ä If A is complex need to work in complex arithmetic.

ä If A is real, then instead of (A− σI)−1 use

<e(A− σI)−1 = 1
2

[
(A− σI)−1 + (A− σ̄I)−1

]
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Preconditioning by polynomials

Main idea:

Iterate with p(A) instead of A in Arnoldi or Lanczos,..

ä Used very early on in subspace iteration [Rutishauser, 1959.]

ä Usually not as reliable as Shift-and-invert techniques but less demanding
in terms of storage.
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Question: How to find a good polynomial (dynamically)?

Approaches:

1 Use of Chebyshev polynomials over ellipses

2 Use polynomials based on Leja points

3 Least-squares polynomials over polygons

4 Polynomials from previous Arnoldi decomposi-
tions
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Polynomial filters and implicit restart

Goal: exploit the Arnoldi procedure to apply polynomial filter of the form:
p(t) = (t− θ1)(t− θ2) . . . (t− θq)

Assume AVm = VmHm + v̂m+1e
T
m

and consider first factor: (t− θ1)

(A− θ1I)Vm = Vm(Hm − θ1I) + v̂m+1e
T
m

Let Hm − θ1I = Q1R1. Then,

(A− θ1I)Vm = VmQ1R1 + v̂m+1e
T
m →

(A− θ1I)(VmQ1) = (VmQ1)R1Q1 + v̂m+1e
T
mQ1 →

A(VmQ1) = (VmQ1)(R1Q1 + θ1I) + v̂m+1e
T
mQ1
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Notation:
R1Q1 + θ1I ≡ H(1)

m ; (b
(1)
m+1)

T ≡ eTmQ1; VmQ1 ≡ V (1)
m

ä AV (1)
m = V (1)

m H(1)
m + vm+1(b

(1)
m+1)

T

ä Note that H(1)
m is upper Hessenberg.

ä Similar to an Arnoldi decomposition.

Observe:

ä R1Q1 +θ1I ≡matrix resulting from one step of the QR algorithm with shift
θ1 applied to Hm.

ä First column of V (1)
m is a multiple of (A− θ1I)v1.

ä The columns of V (1)
m are orthonormal.
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Can now apply second shift in same way:

(A− θ2I)V (1)
m = V (1)

m (H(1)
m − θ2I) + vm+1(b

(1)
m+1)

T →

Similar process: (H(1)
m − θ2I) = Q2R2 then ×Q2 to the right:

(A− θ2I)V (1)
m Q2 = (V (1)

m Q2)(R2Q2) + vm+1(b
(1)
m+1)

TQ2

AV (2)
m = V (2)

m H(2)
m + vm+1(b

(2)
m+1)

T

Now:

1st column of V (2)
m = scalar ×(A− θ2I)v

(1)
1

= scalar ×(A− θ2I)(A− θ1I)v1
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ä Note that

(b
(2)
m+1)

T = eTmQ1Q2 = [0, 0, · · · , 0, η1, η2, η3]

ä Let: V̂m−2 = [v̂1, . . . , v̂m−2] consist of first m − 2 columns of V (2)
m and

Ĥm−2 = Hm(1 : m− 2, 1 : m− 2). Then

AV̂m−2 = V̂m−2Ĥm−2 + β̂m−1v̂m−1e
T
m with

β̂m−1v̂m−1 ≡ η1vm+1 + h
(2)
m−1,m−2v

(2)
m−1 ‖v̂m−1‖2 = 1

ä Result: An Arnoldi process of m− 2 steps with the initial vector p(A)v1.

ä In other words: We know how to apply polynomial ‘filtering’ via a form of
the Arnoldi process, combined with the QR algorithm.
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The Davidson approach

Goal: to use a more general preconditioner to introduce good new
components to the subspace.

ä Ideal new vector would be eigenvector itself!

ä Next best thing: an approximation to (A− µI)−1r where
r = (A− µI)z, current residual.

ä Approximation written in the form M−1r. Note that M can vary at every
step if needed.
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ALGORITHM : 1 Davidson’s method (A = AT )

1. Choose an initial unit vector v1. Set V1 = [v1].
2. For j = 1, . . . ,m Do:
3. w := Avj.
4. Update Hj ≡ V T

j AVj
5. Compute the smallest eigenpair µ, y of Hj.
6. z := Vjy r := Az − µz
7. Test for convergence. If satisfied Return
8. Compute t := M−1

j r

9. Compute Vj+1 := ORTHN([Vj, t])

10. EndDo
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ä Note: Traditional Davidson uses diagonal preconditioning: Mj = D−σjI.

ä Will work only for some matrices

Other options:

ä Shift-and-invert using ILU [negatives: expensive + hard to parallelize.]

ä Filtering (by averaging)

ä Filtering by using smoothers (multigrid style)

ä Iterative solves [e.g., Jacobi-Davidson]
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Jacobi-Davidson: Introduction via Newton’s metod

Assumptions: M = A+ E and Az ≈ µz

Goal: to find an improved eigenpair (µ+ η, z + v).

ä Write A(z + v) = (µ + η)(z + v) and neglect second order terms +
rearrange ä

(M − µI)v − ηz = −r with r ≡ (A− µI)z

ä Unknowns: η and v.

ä Underdertermined system. Need one constraint.

ä Add the condition: wHv = 0 for some vector w.
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In matrix form:
[
M − µI −z
wH 0

] [
v

η

]
=

[
−r
0

]

ä Eliminate v from
second equation:

(M − µI)v − ηz = −r
wH(M − µI)−1z.η = wH(M − µI)−1r

ä Solution: [Olsen’s method]

η =
wH(M − µI)−1r

wH(M − µI)−1z
v = −(M − µI)−1(r − ηz)

When M = A, corresponds to New-
ton’s method for solving

{
(A− λI)u = 0

wTu = Constant
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Another characteriza-
tion of the solution:

v = −(M − µI)−1r + η(M − µI)−1z,

η such that wHv = 0

Alternative expression using projectors.

ä Let Pz= projector in direction of z,
s.t. Pzr = r:

Pz = I − zs
H

sHz
with s ⊥ r

ä Similarly let Pw any projector that leaves v inchanged. Then Olsen’s
solution can be rwritten in mathematically equivalent form:

[Pz(M − µI)Pw]v = −r wHv = 0
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The Jacobi-Davidson approach

ä In orthogonal projection methods (e.g. Arnoldi) we have r ⊥ z

ä Also it is natural to take w ≡ z. Assume ‖z‖2 = 1

With the above assumptions, Olsen’s correction equation is mathematically
equivalent to finding v such that :

(I − zzH)(M − µI)(I − zzH)v = −r v ⊥ z

ä Main attraction: can use iterative method for the solution of the correction
equation. (M -solves not explicitly required).
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Harmonic Ritz values

Main idea: take L = AK in projection process

ä In context of Arnoldi’s method.
Write ũ = Vmy then:

(A− λ̃I)Vmy ⊥ {AVm}

Using AVm = Vm+1Hm ä HH
mV

H
m+1

[
Vm+1Hmy − λ̃Vmy

]
= 0

Notation: Hm = Hm− last row. Then

HH
mHmy − λ̃HH

my = 0
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or
(
HH
mHm + h2

m+1,meme
H
m

)
y = λ̃HH

my

Remark:

Assume Hm is nonsingular and multiply both sides by H−Hm . Then, the
problem is equivalent to

(
Hm + zme

H
m

)
y = λ̃y

with zm = h2
m+1,mH

−H
m em.

ä Modified from Hm only in the last column.
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Implementation within Davidson framework

ä Slight varation to standard Davidson: Introduce zi = M−1
i ri to subspace.

Proceed as in FGMRES: vj+1 = Orthn(Azj, Vj).

ä From Gram-Schmidt process: Azj =
∑j+1

i=1 hijvi

ä Hence the relation AZm = Vm+1H̄m

Approximation: λ, ũ = Zmy

Galerkin Condition: r ⊥ AZm gives the generalized problem

H̄H
mH̄m y = λ H̄H

mV
H
m+1Zm y

15-19 – eig3


