 Preconditioning eigenvalue problems and other approaches Preconditioning eigenvalue problems: Shift-invert, polynomial Polyninial filters, Implicit restarts The Davidson approach Jacobi-Davidson Harmonic Ritz values 	Preconditioning eigenvalue problems• Goal: To extract good approximations to add to a subspace in a projection process. Result: faster convergence.• Best known technique: Shift-and-invert; Work with $B = (A - \sigma I)^{-1}$ • Some success with polynomial preconditioning [Chebyshev iteration / least-squares polynomials]. Work with $B = p(A)$ • Above preconditioners preserve eigenvectors. Other methods (Davidson) use a more general preconditioner M .
Shift-and-invert preconditioning Main idea: to use Arnoldi, or Lanczos, or subspace iteration for the matrix $B = (A - \sigma I)^{-1}$. The matrix <i>B</i> need not be computed explicitly. Each time we need to apply <i>B</i> to a vector we solve a system with <i>B</i> . • Factor $B = A - \sigma I = LU$. Then each solution $Bx = y$ requires solving Lz = y and $Ux = z$. How to deal with complex shifts? • If <i>A</i> is complex need to work in complex arithmetic. • If <i>A</i> is real, then instead of $(A - \sigma I)^{-1}$ use $\Re e(A - \sigma I)^{-1} = \frac{1}{2} [(A - \sigma I)^{-1} + (A - \overline{\sigma} I)^{-1}]$	 <u>152</u> <u>-eig2</u> <u>Preconditioning by polynomials</u> <u>Main idea:</u> Iterate with <i>p</i>(<i>A</i>) instead of <i>A</i> in Arnoldi or Lanczos, Used very early on in subspace iteration [Rutishauser, 1959.] Usually not as reliable as Shift-and-invert techniques but less demanding in terms of storage.

Question: How to find a good polynomial (dynamically)? 1 Use of Chebyshev polynomials over ellipses 2 Use polynomials based on Leja points 3 Least-squares polynomials over polygons 4 Polynomials from previous Arnoldi decompositions	Polynomial filters and implicit restartGoal: exploit the Arnoldi procedure to apply polynomial filter of the form: $p(t) = (t - \theta_1)(t - \theta_2) \dots (t - \theta_q)$ Assume $AV_m = V_m H_m + \hat{v}_{m+1} e_m^T$ and consider first factor: $(t - \theta_1)$ $(A - \theta_1 I)V_m = V_m (H_m - \theta_1 I) + \hat{v}_{m+1} e_m^T$ Let $H_m - \theta_1 I = Q_1 R_1$. Then,
15-5	$(A - \theta_1 I)V_m = V_m Q_1 R_1 + \hat{v}_{m+1} e_m^T \rightarrow (A - \theta_1 I)(V_m Q_1) = (V_m Q_1) R_1 Q_1 + \hat{v}_{m+1} e_m^T Q_1 \rightarrow A(V_m Q_1) = (V_m Q_1)(R_1 Q_1 + \theta_1 I) + \hat{v}_{m+1} e_m^T Q_1$
Notation: $R_1Q_1 + \theta_1I \equiv H_m^{(1)};$ $(b_{m+1}^{(1)})^T \equiv e_m^TQ_1;$ $V_mQ_1 \equiv V_m^{(1)}$ > $AV_m^{(1)} = V_m^{(1)}H_m^{(1)} + v_{m+1}(b_{m+1}^{(1)})^T$ > Note that $H_m^{(1)}$ is upper Hessenberg. > Similar to an Arnoldi decomposition.	Can now apply second shift in same way: $(A - \theta_2 I) V_m^{(1)} = V_m^{(1)} (H_m^{(1)} - \theta_2 I) + v_{m+1} (b_{m+1}^{(1)})^T \rightarrow$ Similar process: $(H_m^{(1)} - \theta_2 I) = Q_2 R_2$ then $\times Q_2$ to the right: $(A - \theta_2 I) V_m^{(1)} Q_2 = (V_m^{(1)} Q_2) (R_2 Q_2) + v_{m+1} (b_{m+1}^{(1)})^T Q_2$
 Observe: R₁Q₁+θ₁I ≡ matrix resulting from one step of the QR algorithm with shift θ₁ applied to H_m. First column of V⁽¹⁾_m is a multiple of (A − θ₁I)v₁. The columns of V⁽¹⁾_m are orthonormal. 	$\begin{aligned} AV_m^{(2)} &= V_m^{(2)} H_m^{(2)} + v_{m+1} (b_{m+1}^{(2)})^T \\ \text{Now:} \\ \text{1st column of } V_m^{(2)} &= \text{scalar} \times (A - \theta_2 I) v_1^{(1)} \\ &= \text{scalar} \times (A - \theta_2 I) (A - \theta_1 I) v_1 \end{aligned}$
15-7	15-8 – eig2

 Note that 	The Davidson approach
$(b_{m+1}^{(2)})^T = e_m^T Q_1 Q_2 = [0, 0, \cdots, 0, \eta_1, \eta_2, \eta_3]$ $\blacktriangleright \text{ Let: } \hat{V}_{m-2} = [\hat{v}_1, \dots, \hat{v}_{m-2}] \text{ consist of first } m - 2 \text{ columns of } V_m^{(2)} \text{ and } \hat{H}_{m-2} = H_m(1:m-2,1:m-2). \text{ Then}$ $A\hat{V}_{m-2} = \hat{V}_{m-2}\hat{H}_{m-2} + \hat{\beta}_{m-1}\hat{v}_{m-1}e_m^T \text{with} \\ \hat{\beta}_{m-1}\hat{v}_{m-1} \equiv \eta_1 v_{m+1} + h_{m-1,m-2}^{(2)} v_{m-1}^{(2)} \hat{v}_{m-1} _2 = 1$ $\blacktriangleright \text{ Result: An Arnoldi process of } m - 2 \text{ steps with the initial vector } p(A)v_1.$ $\blacktriangleright \text{ In other words: We know how to apply polynomial 'filtering' via a form of the Arnoldi process, combined with the QR algorithm.}$	 Goal: to use a more general preconditioner to introduce good new components to the subspace. Ideal new vector would be eigenvector itself! Next best thing: an approximation to (A - μI)⁻¹r where r = (A - μI)z, current residual. Approximation written in the form M⁻¹r. Note that M can vary at every step if needed.
15-9 – eig2	15-10
ALGORITHM : 1 Davidson's method $(A = A^T)$	Note: Traditional Davidson uses diagonal preconditioning: $M_j = D - \sigma_j I$.
1. Choose an initial unit vector v_1 . Set $V_1 = [v_1]$. 2. For $j = 1,, m$ Do:	Will work only for some matrices
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Other options:
5. Compute the smallest eigenpair μ , y of H_j .	 Shift-and-invert using ILU [negatives: expensive + hard to parallelize.] Filtering (hereen sing)
6. $z := V_j y$ $r := Az - \mu z$ 7. Test for convergence. If satisfied Return	 Filtering (by averaging) Filtering by using smoothers (multigrid style)
8. Compute $t := M_j^{-1}r$ 9. Compute $V_{j+1} := ORTHN([V_j, t])$	 Iterative solves [e.g., Jacobi-Davidson]
10. EndDo	
15-11	15-12

Jacobi-Davidson: Introduction via Newton's metodAssumptions: $M = A + E$ and $Az \approx \mu z$ Goal:to find an improved eigenpair $(\mu + \eta, z + v)$. \blacktriangleright Write $A(z + v) = (\mu + \eta)(z + v)$ and neglect second order terms + rearrange \blacktriangleright	In matrix form: $\begin{bmatrix} M - \mu I & -z \\ w^{H} & 0 \end{bmatrix} \begin{bmatrix} v \\ \eta \end{bmatrix} = \begin{bmatrix} -r \\ 0 \end{bmatrix}$ $\blacktriangleright \text{Eliminate } v \text{ from} \qquad (M - \mu I)v - \eta z = -r \\ \text{second equation:} \qquad w^{H}(M - \mu I)^{-1}z.\eta = w^{H}(M - \mu I)^{-1}r$ $\blacktriangleright \text{Solution: [Olsen's method]}$
$(M - \mu I)v - \eta z = -r \text{with} r \equiv (A - \mu I)z$ $ \qquad \qquad$	$\eta = \frac{w^{H}(M - \mu I)^{-1}r}{w^{H}(M - \mu I)^{-1}z} \qquad v = -(M - \mu I)^{-1}(r - \eta z)$ When $M = A$, corresponds to New- ton's method for solving $\begin{cases} (A - \lambda I)u = 0\\ w^{T}u = Constant \end{cases}$ $\frac{15 \cdot 14}{2} \qquad -\text{eig3} \end{cases}$
Another characterization of the solution: $v = -(M - \mu I)^{-1}r + \eta (M - \mu I)^{-1}z,$ η such that $w^{H}v = 0$	 The Jacobi-Davidson approach In orthogonal projection methods (e.g. Arnoldi) we have r ⊥ z Also it is natural to take w ≡ z. Assume z ₂ = 1
Another characteriza-	 In orthogonal projection methods (e.g. Arnoldi) we have $r \perp z$

Harmonic Ritz values

Main idea: take L = AK in projection process

> In context of Arnoldi's method. Write $\tilde{u} = V_m y$ then:

$$(A-\lambda I)V_my\perp \{AV_m\}$$

Using $AV_m = V_{m+1}\underline{H}_m \succ$ $\underline{H}_m^H V_{m+1}^H \left[V_{m+1}\underline{H}_m y - \tilde{\lambda} V_m y \right] = 0$

Notation: $H_m = H_m$ - last row. Then

$$\underline{H}_m^H \underline{H}_m y - ilde{\lambda} H_m^H y = 0$$

or

$$\left(H_m^H H_m + h_{m+1,m}^2 e_m e_m^H
ight)y = ilde{\lambda} H_m^H y$$
 .

Remark:

Assume H_m is nonsingular and multiply both sides by H_m^{-H} . Then, the problem is equivalent to

$$\left(H_m + z_m e_m^H
ight) y = ilde{\lambda} y$$

with $z_m = h_{m+1,m}^2 H_m^{-H} e_m$.

> Modified from H_m only in the last column.

15:1 -eig3 1mplementation within Davidson framework Slight varation to standard Davidson: Introduce $z_i = M_i^{-1}r_i$ to subspace. Proceed as in FGMRES: $v_{j+1} = Orthn(Az_j, V_j)$. From Gram-Schmidt process: $Az_j = \sum_{i=1}^{j+1} h_{ij}v_i$ Hence the relation $AZ_m = V_{m+1}\overline{H}_m$ Approximation: $\lambda, \overline{u} = Z_m y$ Galerkin Condition: $r \perp AZ_m$ gives the generalized problem $\overline{H}_m^H \overline{H}_m y = \lambda \overline{H}_m^H V_{m+1}^H Z_m y$