BACK TO GRAPHS: PATHS, CENTRALITY, PAGERANK

- Back to grah models of sparse matrices
- Paths and powers of matrices
- Perron Frobenius theorem
- Application: Markov chains
- PageRank
- Notions of centrality

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ of an $n \times n$ matrix A :

$$
V=\{1,2, \ldots ., N\} \quad E=\left\{(i, j) \mid a_{i j} \neq 0\right\}
$$

$>\mathrm{G}==$ undirected if \boldsymbol{A} has a symmetric pattern
Example:
$\left[\begin{array}{l|l|l} & \star & \\ \hline & & \\ \hline & \star & \\ \hline \star & & \star \\ \hline & & \end{array}\right]$

$\alpha_{0} 1$ Show the matrix pattern for the graph on the right and give an interpretation of the path $v_{4}, v_{2}, v_{3}, v_{5}, v_{1}$ on the matrix

Example: Adjacency graph of:

Example: For any adjacency matrix \boldsymbol{A}, what is the graph of \boldsymbol{A}^{2} ? [interpret in terms of paths in the graph of A]

Interpretation of graphs of matrices

What is the graph of $\boldsymbol{A}+\boldsymbol{B}$ (for two $n \times n$ matrices)?
(03) What is the graph of A^{T} ?

What is the graph of $A . B$?

Paths in graphs

What is the graph of A^{k} ?
Theorem Let \boldsymbol{A} be the adjacency matrix of a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$. Then for $k \geq 0$ and vertices u and v of G, the number of paths of length k starting at u and ending at v is equal to $\left(A^{k}\right)_{u, v}$.

Proof: Proof is by induction.

If $C=B A$ then $c_{i j}=\Sigma_{l} b_{i l} a_{l j}$. Take $B=A^{k-1}$ and use induction. Any path of length k is formed as a path of length $k-1$ to some node l completed by an edge from l to j. Because $a_{l j}$ is one for that last edge, $c_{i j}$ is just the sum of all possible paths of length k from i to j
$>$ Recall (definition): A matrix is reducible if it can be permuted into a block upper triangular matrix.
> Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component.

$>$ No edges from C to \boldsymbol{A} or \boldsymbol{B}. No edges from B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative $n \times n$ matrix A has a real, positive eigenvalue λ_{1} such that:
(i) λ_{1} is a simple eigenvalue of A;
(ii) λ_{1} admits a positive eigenvector u_{1}; and
(iii) $\left|\lambda_{i}\right| \leq \lambda_{1}$ for all other eigenvalues λ_{i} where $i>1$.
$>$ The spectral radius is equal to the eigenvalue λ_{1}

Definition : a graph is d regular if each vertex has the same degree d.
Proposition: The spectral radius of a d regular graph is equal to d.
Proof: The vector e of all ones is an eigenvector of \boldsymbol{A} associated with the eigenvalue $\boldsymbol{\lambda}=\boldsymbol{d}$. In addition this eigenvalue is the largest possible (consider the infinity norm of A). Therefore e is the Perron-Frobenius vector u_{1}. \square

Application: Markov Chains

> Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/~saad/eig_book 2ndEd.pdf
$>$ Let $\pi \equiv$ row vector of stationary probabilities
> Then π satisfies the equation

$$
\pi P=\pi
$$

$>\boldsymbol{P}$ is the probabilty transition matrix and it is 'stochastic':
A matrix P is said to be stochastic if :
(i) $p_{i j} \geq 0$ for all i, j
(ii) $\sum_{j=1}^{n} p_{i j}=1$ for $i=1, \cdots, n$
(iii) No column of P is a zero column.
$>$ Spectral radius is ≤ 1

* 6 Why?
> Assume P is irreducible. Then:
$>$ Perron Frobenius $\rightarrow \rho(P)=1$ is an eigenvalue and associated eigenvector has positive entries.
$>$ Probabilities are obtained by scaling π by its sum.
> Example: One of the 2 models used for page rank.
Example: A college Fraternity has 50 students at various stages of college (Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without degree. Following table gives probability of transitions from one stage to next

To From	Fr	So.	Ju.	Sr.	Grad	Iwd
Fr.	.2	0	0	0	0	0
So.	.6	.1	0	0	0	0
Ju.	0	.7	.1	0	0	0
Sr.	0	0	.8	.1	0	0
Grad	0	0	0	.75	1	0
Iwd	.2	.2	.1	.15	0	1

$\underbrace{}_{0}$ What is P ? Assume initial population is $x_{0}=[10,16,12,12,0,0]$ and follow the stages of the students for a few years. What is the probability that a student will graduate? What is the probability that $\mathrm{s} /$ he leaves without a degree?

Page-rank

> Can be viewed as an application of Markov Chains
Main point: |A page is important if it is pointed to by other important pages.
> Importance of your page (its PageRank) is determined by summing the page ranks of all pages which point to it.
> Weighting: If a page points to several other pages, then the weighting should be distributed proportionally.
$>$ Imagine many tokens doing a random walk on this graph:

- ($\delta / n)$ chance to follow one of the n links on a page,
- $(1-\delta)$ chance to jump to a random page.
- What's the chance a token will land on each page?

Page-Rank - definitions

If T_{1}, \ldots, T_{n} point to page T_{i} then

$$
\rho\left(T_{i}\right)=1-\delta+\delta\left[\frac{\rho\left(T_{1}\right)}{\left|T_{1}\right|}+\frac{\rho\left(T_{2}\right)}{\left|T_{2}\right|}+\cdots \frac{\rho\left(T_{n}\right)}{\left|T_{n}\right|}\right]
$$

$>\left|T_{j}\right|=$ count of links going out of Page T_{j}. So the 'vote' $\rho\left(T_{j}\right)$ is spread evenly among $\left|\boldsymbol{T}_{j}\right|$ links.
$>$ Sum of all PageRanks $==1: \Sigma_{T} \rho(T)=1$
$>\delta$ is a 'damping' parameter close to 1 - e.g. 0.85

$>$ Defines a (possibly huge) Hy-	$\boldsymbol{h}_{i j}=\left\{\begin{array}{ll}\frac{1}{\left\|T_{i}\right\|} & \text { if } i \text { points to } j \\ 0 & \text { otherwise }\end{array}\right.$ perlink matrix \boldsymbol{H}

4 Nodes

A points to B and D
B points to A, C, and D
C points to A and B
D points to C

1) What is the H matrix?
2) the graph?

	A	B	C	D
A		$1 / 2$		$1 / 2$
B	$1 / 3$		$1 / 3$	$1 / 3$
C	$1 / 2$	$1 / 2$		
D			1	

$>$ Row- sums of H are $=1$.
$>$ Sum of all PageRanks will be one:

$$
\sum_{\text {All-Pages } A} \rho(A)=1
$$

$>H$ is a stochastic matrix [actually it is forced to be by changing zero rows]

Algorithm
 (PageRank)

1. Select initial row vector $v(v \geq 0)$
2. For $\mathrm{i}=1$:maxitr
$3 \quad v:=(1-\delta) e^{T}+\delta v H$
3. end
(090 Do a few steps of this algorithm for previous example with $\delta=0.85$.
$>$ This is a row iteration..

A few properties:

v will remain ≥ 0. [combines non-negative vectors]
$>$ More general iteration is of the form

$$
v:=v[\underbrace{(1-\delta) E+\delta H}_{G}] \text { with } E=e z^{T}
$$

where z is a probability vector $e^{T} z=1$ [Ex. $z=\frac{1}{n} e$]
$>$ A variant of the power method.
$>e$ is a right-eigenvector of G associated with $\boldsymbol{\lambda}=1$. We are interested in the left eigenvector.

R 10 Run test pr + other drivers in matlab page

Kleinberg's Hubs and Authorities

> Idea is to put order into the web by ranking pages by their degree of Authority or "Hubness".
> An Authority is a page pointed to by many important pages.

- Authority Weight = sum of Hub Weights from In-Links.
> A Hub is a page that points to many important pages:
- Hub Weight = sum of Authority Weights from Out-Links.
> Source:
http://www.cs.cornell.edu/home/kleinber/auth.pdf

Computation of Hubs and Authorities

> Simplify computation by forcing sum of squares of weights to be 1 .
$>$ Auth $_{j}=x_{j}=\sum_{i:(i, j) \in \text { Edges }}$ Hub $_{i}$.
$>\operatorname{Hub}_{i}=y_{i}=\sum_{j:(i, j) \in \text { Edges }}$ Auth $_{j}$.
$>$ Let $A=$ Adjacency matrix: $a_{i j}=1$ if $(i, j) \in$ Edges.
$>\mathrm{y}=A \mathrm{x}, \mathrm{x}=A^{T} \mathrm{y}$.
$>$ Iterate \ldots to leading eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A} \& \boldsymbol{A} \boldsymbol{A}^{T}$.
> Answer: Leading Singular Vectors!

Centrality in graphs

> Goal: measure importance of a node, edge, subgraph, .. in a graph
> Many measures introduced over the years
> Early Work: Freeman '77 [introduced 3 measures] - based on 'paths in graph'
> Many different ways of defininf centrality! We will just see a few

Degree centrality: (simplest) 'Nodes with high degree are important' $C_{D}(v)=\operatorname{deg}(v)$ (note: scaling $n-1$ is unimportant)

Closeness centrality: 'Nodes that are close to many other nodes are important'

$$
C_{C}(v)=\frac{1}{\sum_{w \neq v} d(v, w)}
$$

Betweenness centrality:

(Freeman '77)

$$
C_{B}(v)=\sum_{u \neq v, w \neq v} \frac{\sigma_{u w}(v)}{\sigma_{u u}}
$$

- $\sigma_{u w}=$ total \# shortest paths from u to w
- $\sigma_{u w}(v)=$ total \# shortest paths from u to w passing through v
$>$ 'Nodes that are on many shortest paths are important'

Example: Find $C_{D}(v) ; C_{C}(v) ; C_{B}(v)$ when $v=C$

(U, w)	$\sigma_{u w}(v)$	$\sigma_{u w}$	$/$	(U, W)	$\sigma_{u w}(v)$	$\sigma_{u w}$	$/$
(A, B)	0	1	0	$(\mathrm{~B}, \mathrm{E})$	0	1	0
$(\mathrm{~A}, \mathrm{D})$	0	1	0	$(\mathrm{~B}, \mathrm{~F})$	1	1	1
$(\mathrm{~A}, \mathrm{E})$	0	1	0	(D, E)	1	2	.5
$(\mathrm{~A}, \mathrm{~F})$	0	1	0	(D, F)	1	1	1
$(\mathrm{~B}, \mathrm{D})$	0	1	0	(E, F)	0	1	0

$>C_{D}(v)=3$;
$>C_{C}(v)=1 /\left[d_{C A}+d_{C B}+d_{C D}+d_{C E}+d_{C F}\right]$

$$
=1 /[2+1+1+2+1]=1 / 7
$$

$>C_{B}(v)=2.5$ (add all ratios in table)
Redo this for $v=B$

Eigenvector centrality:

$>$ Supppose we have n nodes $v_{j}, j=1, \cdots, n$ - each with a measure of importance ('prestige') p_{j}
$>$ Principle: prestige of i depends on that of its neighbors.
$>$ Prestige $x_{i}=$ multiple of sum of prestiges of neighbors pointing to it

$$
\lambda x_{i}=\sum_{j \in \mathcal{N}(i)} x_{j}=\sum_{j=1}^{n} a_{j i} x_{j}
$$

$>x_{i}=$ component of eigenvector associated with λ.
$>$ Perron Frobenius theorem at play again: take largest eigenvalue $\rightarrow x_{i}$'s nonnegative

