BACK TO GRAPHS: PATHS, CENTRALITY, PAGERANK

- Back to grah models of sparse matrices
- Paths and powers of matrices
- Perron Frobenius theorem
- Application: Markov chains
- PageRank
- Notions of centrality

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V, E) of an $n \times n$ matrix A:

$$V = \{1, 2,, N\} \qquad E = \{(i, j) | a_{ij}
eq 0\}$$

G == undirected if A has a symmetric pattern

Example:

Show the matrix pattern for the graph on the right and give an interpretation of the path v_4, v_2, v_3, v_5, v_1 on the matrix

Example: | Adjacency graph of:

Example: For any adjacency matrix A, what is the graph of A^2 ? [interpret in terms of paths in the graph of A

Interpretation of graphs of matrices

Mhat is the graph of A + B (for two $n \times n$ matrices)?

 \triangle_3 What is the graph of A^T ?

 \triangle_4 What is the graph of A.B?

Paths in graphs

Theorem Let A be the adjacency matrix of a graph G = (V, E). Then for $k \geq 0$ and vertices u and v of G, the number of paths of length k starting at u and ending at v is equal to $(A^k)_{u,v}$.

Proof: Proof is by induction.

If C = BA then $c_{ij} = \sum_l b_{il} a_{lj}$. Take $B = A^{k-1}$ and use induction. Any path of length k is formed as a path of length k-1 to some node l completed by an edge from l to j. Because a_{lj} is one for that last edge, c_{ij} is just the sum of all possible paths of length k from i to j

- ➤ Recall (definition): A matrix is *reducible* if it can be permuted into a block upper triangular matrix.
- Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component.

graph1

No edges from C to A or B. No edges from B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative $n \times n$ matrix A has a real, positive eigenvalue λ_1 such that:

- (i) λ_1 is a simple eigenvalue of A;
- (ii) λ_1 admits a positive eigenvector u_1 ; and
- $(iii)|\lambda_i| \leq \lambda_1$ for all other eigenvalues λ_i where i > 1.
- \succ The spectral radius is equal to the eigenvalue λ_1

 \triangleright Definition: a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the eigenvalue $\lambda = d$. In addition this eigenvalue is the largest possible (consider the infinity norm of A). Therefore e is the Perron-Frobenius vector u_1 .

Application: Markov Chains

- Read about Markov Chains in Sect. 10.9 of: https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf
- \blacktriangleright Let $\pi \equiv \text{row vector of stationary probabilities}$

 $\pi P=\pi$

- \blacktriangleright Then π satisfies the equation
- \triangleright P is the probability transition matrix and it is 'stochastic':

A matrix P is said to be stochastic if:

- (i) $p_{ij} \geq 0$ for all i, j
- (ii) $\sum_{j=1}^n p_{ij}=1$ for $i=1,\cdots,n$
- (iii) No column of P is a zero column.

ightharpoonup Spectral radius is ≤ 1

- > Assume *P* is irreducible. Then:
- Perron Frobenius $\rightarrow \rho(P)=1$ is an eigenvalue and associated eigenvector has positive entries.
- \triangleright Probabilities are obtained by scaling π by its sum.
- Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college (Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without degree. Following table gives probability of transitions from one stage to next

- graph1

To From	Fr	So.	Ju.	Sr.	Grad	lwd
Fr.	.2	0	0	0	0	0
So.	.6	.1	0	0	0	0
Ju.	0	.7	.1	0	0	0
Sr.	0	0	.8	.1	0	0
Grad	0	0	0	.75	1	0
lwd	.2	.2	.1	.15	0	1

What is P? Assume initial population is $x_0 = [10, 16, 12, 12, 0, 0]$ and follow the stages of the students for a few years. What is the probability that a student will graduate? What is the probability that s/he leaves without a degree?

16-12 ______ – graph

Page-rank

Can be viewed as an application of Markov Chains

Main point: A page is important if it is pointed to by other important pages.

- Importance of your page (its PageRank) is determined by summing the page ranks of all pages which point to it.
- Weighting: If a page points to several other pages, then the weighting should be distributed proportionally.
- Imagine many tokens doing a random walk on this graph:
 - (δ/n) chance to follow one of the n links on a page,
 - (1δ) chance to jump to a random page.
 - What's the chance a token will land on each page?

Page-Rank - definitions

If $T_1, ..., T_n$ point to page T_i then

$$ho(T_i) \ = \ 1 - \delta + \delta \left[rac{
ho(T_1)}{|T_1|} + rac{
ho(T_2)}{|T_2|} + \cdots rac{
ho(T_n)}{|T_n|}
ight]$$

- $|T_i|$ = count of links going out of Page T_i . So the 'vote' $\rho(T_i)$ is spread evenly among $|T_i|$ links.
- ightharpoonup Sum of all PageRanks == 1: $\Sigma_T \rho(T) = 1$
- \triangleright δ is a 'damping' parameter close to 1 e.g. 0.85
- Defines a (possibly huge) Hylink matrix $m{H}$ $h_{ij} = \left\{egin{array}{l} rac{1}{|T_i|} & \text{if} \quad i \text{ points to } j \ 0 & \text{otherwise} \end{array}
 ight.$ perlink matrix H

$$h_{ij} = \left\{ egin{array}{ll} rac{1}{|T_i|} & ext{i points to } i \ 0 & ext{otherwise} \end{array}
ight.$$

PageRank

B points to A, C, and D

C points to A and B

D points to C

- 1) What is the H matrix?
- 2) the graph?

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D
\boldsymbol{A}		1/2		1/2
\boldsymbol{B}	1/3		1/3	1/3
\boldsymbol{C}	1/2	1/2		
D			1	

- \triangleright Row-sums of H are = 1.
- Sum of all PageRanks will be one:

$$\sum_{\mathsf{AII} ext{-}\mathsf{Pages}_A}
ho(A) = 1.$$

H is a stochastic matrix [actually it is forced to be by changing zero rows]

Algorithm (PageRank)

- Select initial row vector v ($v \geq 0$)
- For i=1:maxitr
- $v := (1 \delta)e^T + \delta v H$ 3
- end

- Do a few steps of this algorithm for previous example with $\delta = 0.85$.
- This is a row iteration...

$$\boldsymbol{v}$$

$$= (1-\delta)\epsilon$$

 \boldsymbol{v}

 δH

A few properties:

- \triangleright v will remain \geq 0. [combines non-negative vectors]
- More general iteration is of the form

$$v := v[\underbrace{(1-\delta)E + \delta H}]$$
 with $E = ez^T$

where z is a probability vector $e^Tz=1$ [Ex. $z=\frac{1}{n}e$]

- A variant of the power method.
- ightharpoonup e is a right-eigenvector of G associated with $\lambda=1$. We are interested in the left eigenvector.

Run test_pr + other drivers in matlab page

Kleinberg's Hubs and Authorities

- ldea is to put order into the web by ranking pages by their degree of Authority or "Hubness".
- An Authority is a page pointed to by many important pages.
- Authority Weight = sum of Hub Weights from In-Links.
- A Hub is a page that points to many important pages:
- Hub Weight = sum of Authority Weights from Out-Links.
- Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf

Computation of Hubs and Authorities

- Simplify computation by forcing sum of squares of weights to be 1.
- ightharpoonup Auth $_j=x_j=\sum_{i:(i,j)\in \mathrm{Edges}}\mathrm{Hub}_i$.
- ightharpoonup Hub_i = $y_i = \sum_{j:(i,j) \in \text{Edges}} \text{Auth}_j$.
- ightharpoonup Let A= Adjacency matrix: $a_{ij}=1$ if $(i,j)\in Edges$.
- $ightharpoonup y = Ax, x = A^Ty.$
- \blacktriangleright Iterate ... to leading eigenvectors of $A^TA \& AA^T$.
- Answer: Leading Singular Vectors!

GRAPH CENTRALITY

Centrality in graphs

- Goal: measure importance of a node, edge, subgraph, .. in a graph
- Many measures introduced over the years
- ➤ Early Work: Freeman '77 [introduced 3 measures] based on 'paths in graph'
- Many different ways of defininf centrality! We will just see a few

Degree centrality: (simplest) 'Nodes with high degree are important'

$$C_D(v) = \mathsf{deg}(v)$$

(note: scaling n-1 is unimportant)

Closeness centrality: 'Nodes that are close to many other nodes are important'

$$C_C(v) = rac{1}{\sum_{w
eq v} d(v,w)}$$

Betweenness centrality:

(Freeman '77)

$$C_B(v) = \sum_{u
eq v, w
eq v} rac{\sigma_{uw}(v)}{\sigma_{uw}}$$

- σ_{uw} = total # shortest paths from u to w
- $\sigma_{uw}(v)$ = total # shortest paths from u to w passing through v
- 'Nodes that are on many shortest paths are important'

Example: Find $C_D(v)$; $C_C(v)$; $C_B(v)$ when v = C

(u,w)	$\sigma_{uw}(v)$	σ_{uw}	/	(u,w)	$\sigma_{uw}(v)$	σ_{uw}	/
(A,B)	0	1	0	(B,E)	0	1	0
(A,D)	0	1	0	(B,F)	1	1	1
(A,E)	0	1	0	(D,E)	1	2	.5
(A,F)	0	1	0	(D,F)	1	1	1
(B,D)	0	1	0	(E,F)	0	1	0

- $ightharpoonup C_D(v) = 3$;
- $ightharpoonup C_C(v) = 1/[d_{CA} + d_{CB} + d_{CD} + d_{CE} + d_{CF}]$ = 1/[2+1+1+2+1] = 1/7
- $ightharpoonup C_B(v) = 2.5$ (add all ratios in table)

Redo this for v = B

Eigenvector centrality:

- ightharpoonup Supppose we have n nodes $v_j,\ j=1,\cdots,n-$ each with a measure of importance ('prestige') p_j
- Principle: prestige of i depends on that of its neighbors.
- Prestige x_i = multiple of sum of prestiges of neighbors pointing to it

$$oldsymbol{\lambda} x_i = \sum_{j \, \in \, \mathcal{N}(i)} x_j = \sum_{j=1}^n a_{ji} x_j$$

- x_i = component of eigenvector associated with λ .
- ightharpoonup Perron Frobenius theorem at play again: take largest eigenvalue $ightharpoonup x_i$'s nonnegative