BACK TO GRAPHS: PATHS, CENTRALITY, PAGERANK

* Back to grah models of sparse matrices
* Paths and powers of matrices

* Perron Frobenius theorem

* Application: Markov chains

» PageRank

* Notions of centrality

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V, E) of an n x n matrix A :

E = {(i\3)la;; # 0}

vV =1{1,2,...,N}

» G == undirected if A has a symmetric pattern
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* @ * *
* * *
* * * *
* @) -—-——— * | |* @7
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Show the matrix pattern for the graph on
the right and give an interpretation of the path
vy, V2, V3, Vs, v; ON the matrix

* *
* *
Adjacency graph of: A= * O I
* *
* *
* *

For any adjacency matrix A, what is the graph of A2? [inter-

pret in terms of paths in the graph of A]
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Interpretation of graphs of matrices

What is the graph of A + B (for two n x n matrices)?
What is the graph of AT ?
What is the graph of A.B?
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Paths in graphs

What is the graph of A*?
Theorem Let A be the adjacency matrix of a graph G = (V, E). Then for
k > 0 and vertices v and v of G, the number of paths of length k starting at

u and ending at v is equal to (A*),,.

Proof: Proof is by induction.lll

If C = BA then Cij = X bjgagj. Take B = A*!

and use induction. Any path of length %
is formed as a path of length & — 1 to some
node [ completed by an edge from [ to j.
Because q;; is one for that last edge, ¢;; is
just the sum of all possible paths of length
k from i to j
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» Recall (definition): A matrix is reducible if it can be permuted into a block
upper triangular matrix.

> Note: A matrix is reducible iff its adjacency graph is not (strongly) con-
nected, i.e., iff it has more than one connected component.
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. > No edges from C to
| A or B. No edges from
. Bto A.

Theorem: Perron-Frobenius An irreducible, nonnegative n x n matrix A
has a real, positive eigenvalue A\, such that:
(i) A1 is a simple eigenvalue of A;
(i) A1 admits a positive eigenvector u; ; and
(ii)|A;] < Ay for all other eigenvalues A; where ¢ > 1.

» The spectral radius is equal to the eigenvalue A,
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» Definition : a graph is d regular if each vertex has the same degree d.

| Proposition: The spectral radius of a d regular graph is equal to d. |

Proof: The vector e of all ones is an eigenvector of A associated with the
eigenvalue A = d. In addition this eigenvalue is the largest possible (consider
the infinity norm of A). Therefore e is the Perron-Frobenius vector u;. |
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Application: Markov Chains

» Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/~saad/eig book 2ndEd.pdf

» Let w = row vector of stationary probabilities

» Spectral radiusis < 1
Why?
» Assume P is irreducible. Then:

» Perron Frobenius — p(P) = 1 is an eigenvalue and associated eigen-
vector has positive entries.

» Probabilities are obtained by scaling = by its sum.

» Example: One of the 2 models used for page rank.

A college Fraternity has 50 students at various stages of college

(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage to next
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. nwP =
» Then = satisfies the equation —
» P is the probabilty transition matrix and it is ‘stochastic’:
A matrix P is said to be stochastic if :
(i) pi; > 0foralli,j
(i) Z;;lpij =1fori=1,---,n
(iii) No column of P is a zero column.
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To From|Fr|So.|Ju.|Sr. | Grad|lwd
Fr. 2, 0010 0 0
So. 6/.1/0]0 0 0
Ju. 0 .7/.1]0 0 0
Sr. 0|0 |.8].1 0 0
Grad 0/ 0| 0].75 1 0
Iwd 2211115 0 1

What is P? Assume initial population is =, = [10,16,12,12,0,0] and
follow the stages of the students for a few years. What is the probability that
a student will graduate? What is the probability that s/he leaves without a
degree?
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» Can be viewed as an application of Markov Chains

Main point: | A page is important if it is pointed to by other important pages.

> Importance of your page (its PageRank) is determined by summing the
page ranks of all pages which point to it.

»  Weighting: If a page points to several other pages, then the weighting
should be distributed proportionally.

» Imagine many tokens doing a random walk on this graph:
e (6/n) chance to follow one of the n links on a page,
e (1 — &) chance to jump to a random page.
e What's the chance a token will land on each page?
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Page-Rank - definitions

If Ty, ..., T,, point to page T; then

_ p(T1)  p(T2) p(Tn)
o(T) = 1_‘”5{ o Tm |Tn|}

> |T;| = count of links going out of Page T;. So the 'vote’ p(T}) is spread

evenly among |Tj| links.
» Sum of all PageRanks == 1: 3;p(T) =1

» § is a 'damping’ parameter close to 1 —e.g. 0.85

4 Nodes

A points to B and D

B pointsto A, C,and D
C points to A and B

D points to C

1) What is the H matrix?
2) the graph?
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» Defines a (possibly huge) Hy- b ﬁ if 4 pointsto j
perlink matrix H “ 10 otherwise
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A B C D
/ & B 1/3 1/3 1/3
®/ Ccl1/2 1/2
D 1

» Row- sums of H are = 1.

» Sum of all PageRanks will be Z p(A) = 1.
one: All-Pagesa

» H is a stochastic matrix [actually it is forced to be by changing zero rows]
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Algorithm | (PageRank)

1. Select initial row vector v (v > 0)
2. For i=1:maxitr

3 v:=(1—4)el +6vH

4. end

Do a few steps of this algorithm for previous example with § = 0.85.

» This is a row iteration..

= (1-90)e” |+—m—3.|__H
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» v willremain > 0. [combines non-negative vectors]
» More general iteration is of the form

v:=wo[(1—-38)E+ dH] with E = e2"

G

A few properties:

where z is a probability vector ez = 1 [Ex. z = 1¢]
» A variant of the power method.

» e is aright-eigenvector of G associated with A = 1. We are interested in
the left eigenvector.

Run test pr + other drivers in matlab page
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Kleinberg’s Hubs and Authorities

» |dea is to put order into the web by ranking pages by their degree of
Authority or "THubness”.

Computation of Hubs and Authorities

» Simplify computation by forcing sum of squares of weights
to be 1.

» An Authority is a page pointed to by many important pages. > Authj = ;=3 i\ cpages Hubi-
e Authority Weight = sum of Hub Weights from In-Links.
» Hub,; = Y = Zj:(i,j)eEdges Auth]-.
» A Hub is a page that points to many important pages: . : oL
» Let A = Adjacency matrix: a;; = 1 if Edges.
e Hub Weight = sum of Authority Weights from Out-Links. J y i (4,5) € Bdges
» y = Ax,x = ATy.
» Source: Y X Y
> lterate ... to leading eigenvectors of ATA & AAT.
http://www.cs.cornell.edu/home/kleinber/auth.pdf geq
» Answer: Leading Singular Vectors!
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GRAPH CENTRALITY

Centrality in graphs

» Goal: measure importance of a node, edge, subgraph, .. in a graph

» Many measures introduced over the years

» Early Work: Freeman ’77 [introduced 3 measures] — based on ‘paths in
graph’

» Many different ways of defininf centrality! We will just see a few
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Degree centrality:  (simplest) ‘Nodes
with high degree are important’
(note: scaling n — 1 is unimportant)

Cp(v) = deg(v)

Closeness centrality: ‘Nodes that are Co(w) = 1
close to many other nodes are important’ Lo A00)
Betweenness centrality: T (v
y y CB(v) = Zu;év,w;év a-uf,,)
(Freeman ’77)

e o, = total # shortest paths from u to w
e o, (v) = total # shortest paths from w to w passing through v

» ’Nodes that are on many shortest paths are important’
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Find Cp(v); Cc(v); Cp(v) whenv = C

(UW) Tuw(®) Tuw!|/ | (UW) 0uw(v) Tuw| /

A (&) D (A,B) 0 1 10| (B,E) 0 110
(A,D) 0 1 10| (B,F) 1 1 1

(AE) 0 1 10| (D,E) 1 2 1.5

E (E) c (A,F) 0 1 10| (D,F) 1 1 1
~ (B,D) 0 1 10| (EF) 0 110

> CD(’U)=3,

» Cc(v) =1/[dca + de + dep + deg + der)
—1/24+1+1+2+1] =1/7

> Cp(v) = 2.5 (add all ratios in table)
Redo this for v = B
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Eigenvector centrality:

»  Supppose we have n nodes v;, 5 = 1,--- ,n— each with a measure of
importance ('prestige’) p,

» Principle: prestige of < depends on that of its neighbors.

» Prestige x; = multiple of sum of pres-

tiges of neighbors pointing to it Az; = Z *j = Z @ji%j
j € N() j=1

» x; = component of eigenvector associated with A.

» Perron Frobenius theorem at play again: take largest eigenvalue — z;’s
nonnegative
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