

Paths in graphs \blacksquare_{D5} What is the graph of A^k ?Theorem Let A be the adjacency matrix of a graph $G = (V, E)$. Then for $k \ge 0$ and vertices u and v of G, the number of paths of length k starting atu and ending at v is equal to $(A^k)_{u,v}$.Proof: Proof is by induction.	If $C = BA$ then $c_{ij} = \sum_l b_{il}a_{lj}$. Take $B = A^{k-1}$ and use induction. Any path of length k is formed as a path of length $k-1$ to some node l completed by an edge from l to j . Because a_{lj} is one for that last edge, c_{ij} is just the sum of all possible paths of length k from i to j
 Recall (definition): A matrix is <i>reducible</i> if it can be permuted into a block upper triangular matrix. Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component. 	166
16-7 graph1	16-8 – graph1

> Definition : a graph is d regular if each vertex has the same degree d .	Application: Markov Chains
Proposition: The spectral radius of a <i>d</i> regular graph is equal to <i>d</i> . Proof: The vector <i>e</i> of all ones is an eigenvector of <i>A</i> associated with the eigenvalue $\lambda = d$. In addition this eigenvalue is the largest possible (consider the infinity norm of <i>A</i>). Therefore <i>e</i> is the Perron-Frobenius vector u_1 .	 Read about Markov Chains in Sect. 10.9 of: https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf Let π ≡ row vector of stationary probabilities Then π satisfies the equation → πP = π P is the probability transition matrix and it is 'stochastic': A matrix P is said to be <i>stochastic</i> if : (i) p_{ij} ≥ 0 for all i, j (ii) ∑ⁿ_{j=1} p_{ij} = 1 for i = 1,, n (iii) No column of P is a zero column.
	16-10 – graph1
> Spectral radius is ≤ 1	To From Fr So. Ju. Sr. Grad lwd
<mark>∕∞₀</mark> Why?	Fr2 0 0 0 0
Assume P is irreducible. Then:	Ju. 0 .7 .1 0 0 0
> Perron Frobenius $\rightarrow \rho(P) = 1$ is an eigenvalue and associated eigen-	Sr. 0 0 .8 .1 0 0
vector has positive entries.	Grad 0 0 0 .75 1 0
> Probabilities are obtained by scaling π by its sum.	
Example: One of the 2 models used for page rank.	Z ₁₇ What is <i>P</i> ? Assume initial population is $x_0 = [10, 16, 12, 12, 0, 0]$ and follow the stages of the students for a forward N but is the much bility that
Example: A college Fraternity has 50 students at various stages of college	a student will graduate? What is the probability that s/he leaves without a
(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the	degree?
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without	
degree. Tonowing table gives probability of transitions normone stage to next	
16-11 graph1	

Page-rank	Page-Rank - definitions
Can be viewed as an application of Markov Chains	If $T_1,, T_n$ point to page T_i then
Main point: A page is important if it is pointed to by other important pages.	$ ho(T_i) \ = \ 1 - \delta + \delta \left[rac{ ho(T_1)}{ T_i } + rac{ ho(T_2)}{ T_i } + \cdots rac{ ho(T_n)}{ T_i } ight]$
Importance of your page (its PageRank) is determined by summing the page ranks of all pages which point to it.	$ T_1 T_2 T_n]$ $ T_j = \text{count of links going out of Page } T_j. \text{ So the 'vote' } \rho(T_j) \text{ is spread}$
Weighting: If a page points to several other pages, then the weighting should be distributed proportionally.	evenly among $ T_j $ links. Sum of all PageRanks == 1: $\Sigma_T \rho(T) = 1$
Imagine many tokens doing a random walk on this graph: $(\delta(u))$ obspace to follow one of the unlinks on a page	> δ is a 'damping' parameter close to 1 – e.g. 0.85
 (δ/n) chance to follow one of the n links on a page, (1 - δ) chance to jump to a random page. What's the chance a token will land on each page? 	Defines a (possibly huge) Hyperlink matrix H $h_{ij} = \begin{cases} \frac{1}{ T_i } & \text{if } i \text{ points to } j \\ 0 & \text{otherwise} \end{cases}$
16-13 – PageRank	16-14 – PageRank
Zna 4 Nodes	
A points to B and D	$\begin{array}{c c} A & 1/2 & 1/2 \\ \hline B & 1/3 & 1/3 & 1/3 \\ \hline \end{array}$
B points to A, C, and D	$\begin{array}{c} C \\ C $
C points to A and B	
D points to C	Row- sums of H are = 1.
1) What is the H matrix?	$\sum e(A) = 1$
2) the graph?	one:
	H is a stochastic matrix [actually it is forced to be by changing zero rows]
16-15	16-16 – PageRank

Eigenvector centrality:

- > Suppose we have n nodes v_j , $j = 1, \cdots, n$ each with a measure of importance ('prestige') p_j
- \blacktriangleright Principle: prestige of *i* depends on that of its neighbors.
- > Prestige x_i = multiple of sum of prestiges of neighbors pointing to it

$$\lambda x_i = \sum_{j \ \in \ \mathcal{N}(i)} x_j = \sum_{j=1}^n a_{ji} x_j$$

- > x_i = component of eigenvector associated with λ .
- > Perron Frobenius theorem at play again: take largest eigenvalue $\rightarrow x_i$'s nonnegative

16-25

- centrality