
BACK TO GRAPHS: PATHS, CENTRALITY, PAGERANK

• Back to grah models of sparse matrices

• Paths and powers of matrices

• Perron Frobenius theorem

• Application: Markov chains

• PageRank

• Notions of centrality

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V,E) of an n× n matrix A :

V = {1, 2, ...., N} E = {(i, j)|aij 6= 0}

ä G == undirected if A has a symmetric pattern
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16-2 – graph1

-1 Show the matrix pattern for the graph on
the right and give an interpretation of the path
v4, v2, v3, v5, v1 on the matrix
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Example: Adjacency graph of: A =
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Example: For any adjacency matrix A, what is the graph of A2? [inter-
pret in terms of paths in the graph of A]
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Interpretation of graphs of matrices

-2 What is the graph of A+B (for two n× n matrices)?

-3 What is the graph of AT ?

-4 What is the graph of A.B?
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Paths in graphs

-5 What is the graph of Ak?

Theorem Let A be the adjacency matrix of a graph G = (V,E). Then for
k ≥ 0 and vertices u and v of G, the number of paths of length k starting at
u and ending at v is equal to (Ak)u,v.

Proof: Proof is by induction.
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ä Recall (definition): A matrix is reducible if it can be permuted into a block
upper triangular matrix.

ä Note: A matrix is reducible iff its adjacency graph is not (strongly) con-
nected, i.e., iff it has more than one connected component.
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ä No edges from C to
A orB. No edges from
B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative n × n matrix A
has a real, positive eigenvalue λ1 such that:
(i) λ1 is a simple eigenvalue of A;
(ii) λ1 admits a positive eigenvector u1 ; and
(iii)|λi| ≤ λ1 for all other eigenvalues λi where i > 1.

ä The spectral radius is equal to the eigenvalue λ1
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ä Definition : a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the
eigenvalue λ = d. In addition this eigenvalue is the largest possible (consider
the infinity norm of A). Therefore e is the Perron-Frobenius vector u1.
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Application: Markov Chains

ä Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/∼saad/eig book 2ndEd.pdf

ä Let π ≡ row vector of stationary probabilities
ä Then π satisfies the equation →

πP = π

ä P is the probabilty transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if :
(i) pij ≥ 0 for all i, j
(ii)

∑n
j=1 pij = 1 for i = 1, · · · , n

(iii) No column of P is a zero column.
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ä Spectral radius is ≤ 1

-6 Why?

ä Assume P is irreducible. Then:

ä Perron Frobenius → ρ(P ) = 1 is an eigenvalue and associated eigen-
vector has positive entries.

ä Probabilities are obtained by scaling π by its sum.

ä Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college
(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage to next

16-11 – graph1

To From Fr So. Ju. Sr. Grad lwd
Fr. .2 0 0 0 0 0
So. .6 .1 0 0 0 0
Ju. 0 .7 .1 0 0 0
Sr. 0 0 .8 .1 0 0
Grad 0 0 0 .75 1 0
lwd .2 .2 .1 .15 0 1

-7 What is P? Assume initial population is x0 = [10, 16, 12, 12, 0, 0] and
follow the stages of the students for a few years. What is the probability that
a student will graduate? What is the probability that s/he leaves without a
degree?
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Page-rank

ä Can be viewed as an application of Markov Chains

Main point: A page is important if it is pointed to by other important pages.

ä Importance of your page (its PageRank) is determined by summing the
page ranks of all pages which point to it.

ä Weighting: If a page points to several other pages, then the weighting
should be distributed proportionally.

ä Imagine many tokens doing a random walk on this graph:
• (δ/n) chance to follow one of the n links on a page,
• (1− δ) chance to jump to a random page.
•What’s the chance a token will land on each page?
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Page-Rank - definitions

If T1, ..., Tn point to page Ti then

ρ(Ti) = 1− δ + δ

[
ρ(T1)

|T1|
+
ρ(T2)

|T2|
+ · · · ρ(Tn)

|Tn|

]

ä |Tj| = count of links going out of Page Tj. So the ’vote’ ρ(Tj) is spread
evenly among |Tj| links.

ä Sum of all PageRanks == 1: ΣTρ(T ) = 1

ä δ is a ’damping’ parameter close to 1 – e.g. 0.85

ä Defines a (possibly huge) Hy-
perlink matrix H

hij =

{
1
|Ti| if i points to j
0 otherwise
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-8 4 Nodes

A points to B and D

B points to A, C, and D

C points to A and B

D points to C

1) What is the H matrix?

2) the graph?

16-15 – PageRank

A
B

C

D

A B C D

A 1/2 1/2

B 1/3 1/3 1/3

C 1/2 1/2

D 1

ä Row- sums of H are = 1.

ä Sum of all PageRanks will be
one:

∑

All-PagesA
ρ(A) = 1.

ä H is a stochastic matrix [actually it is forced to be by changing zero rows]
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Algorithm (PageRank)

1. Select initial row vector v (v ≥ 0)
2. For i=1:maxitr
3 v := (1− δ)eT + δvH

4. end

-9 Do a few steps of this algorithm for previous example with δ = 0.85.

ä This is a row iteration..

v = (1− δ)eT + v . δH
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A few properties: ä v will remain≥ 0. [combines non-negative vectors]
ä More general iteration is of the form

v := v[(1− δ)E + δH︸ ︷︷ ︸
G

] with E = ezT

where z is a probability vector eTz = 1 [Ex. z = 1
n
e]

ä A variant of the power method.

ä e is a right-eigenvector of G associated with λ = 1. We are interested in
the left eigenvector.

-10 Run test pr + other drivers in matlab page
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Kleinberg’s Hubs and Authorities

ä Idea is to put order into the web by ranking pages by their degree of
Authority or ”Hubness”.

ä An Authority is a page pointed to by many important pages.
• Authority Weight = sum of Hub Weights from In-Links.

ä A Hub is a page that points to many important pages:
• Hub Weight = sum of Authority Weights from Out-Links.

ä Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf
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Computation of Hubs and Authorities

ä Simplify computation by forcing sum of squares of weights
to be 1.

ä Authj = xj =
∑

i:(i,j)∈Edges Hubi.

ä Hubi = yi =
∑

j:(i,j)∈Edges Authj.

ä Let A = Adjacency matrix: aij = 1 if (i, j) ∈ Edges.

ä y = Ax, x = ATy.

ä Iterate . . . to leading eigenvectors of ATA & AAT .

ä Answer: Leading Singular Vectors!
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GRAPH CENTRALITY

Centrality in graphs

ä Goal: measure importance of a node, edge, subgraph, .. in a graph

ä Many measures introduced over the years

ä Early Work: Freeman ’77 [introduced 3 measures] – based on ‘paths in
graph’

ä Many different ways of defininf centrality! We will just see a few

16-22 – centrality

Degree centrality: (simplest) ‘Nodes
with high degree are important’

CD(v) = deg(v)

(note: scaling n− 1 is unimportant)

Closeness centrality: ‘Nodes that are
close to many other nodes are important’

CC(v) = 1∑
w 6=v d(v,w)

Betweenness centrality:
(Freeman ’77)

CB(v) =
∑

u 6=v,w 6=v
σuw(v)
σuw

• σuw = total # shortest paths from u to w

• σuw(v) = total # shortest paths from u to w passing through v

ä ’Nodes that are on many shortest paths are important’

16-23 – centrality

Example: Find CD(v); CC(v); CB(v) when v = C

A  B

E F C

D

(u,w) σuw(v) σuw / (u,w) σuw(v) σuw /
(A,B) 0 1 0 (B,E) 0 1 0
(A,D) 0 1 0 (B,F) 1 1 1
(A,E) 0 1 0 (D,E) 1 2 .5
(A,F) 0 1 0 (D,F) 1 1 1
(B,D) 0 1 0 (E,F) 0 1 0

ä CD(v) = 3 ;

ä CC(v) = 1/[dCA + dCB + dCD + dCE + dCF ]

= 1/[2 + 1 + 1 + 2 + 1] = 1/7

ä CB(v) = 2.5 (add all ratios in table)

-11 Redo this for v = B
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Eigenvector centrality:

ä Supppose we have n nodes vj, j = 1, · · · , n– each with a measure of
importance (’prestige’) pj

ä Principle: prestige of i depends on that of its neighbors.

ä Prestige xi = multiple of sum of pres-
tiges of neighbors pointing to it λxi =

∑

j ∈ N (i)

xj =

n∑

j=1

ajixj

ä xi = component of eigenvector associated with λ.

ä Perron Frobenius theorem at play again: take largest eigenvalue→ xi’s
nonnegative
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