- Graph Laplaceans, definitions and basic properties
- Graph partitioning -
- Introduction to clustering
- Graph Embeddings, vertex embeddings . The problem
- Use of Graph Laplaceans, Laplacean Eigenmaps
- Use of similarity graphs: Locally Linear Embeddings
- Explicit dimension reduction method: PCA, LLP, ...

Graph Laplaceans - Definition

"Laplace-type" matrices associated with general undirected graphs useful in many applications
$>$ Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ define

- A matrix W of weights $w_{i j}$ for each edge
- Assume $w_{i j} \geq 0, w_{i i}=0$, and $w_{i j}=w_{j i} \forall(i, j)$
- The diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ with $d_{i}=\sum_{j \neq i} w_{i j}$
> Corresponding graph Laplacean of G is: $\quad L=\boldsymbol{D}-\boldsymbol{W}$
$>$ Gershgorin's theorem $\rightarrow L$ is positive semidefinite.
$>$ Simplest case:

$$
w_{i j}=\left\{\begin{array}{l}
1 \text { if }(i, j) \in E \& i \neq j \quad D=\operatorname{diag}\left[d_{i}=\sum_{j \neq i} w_{i j}\right] \\
0 \quad \text { else }
\end{array}\right.
$$

Example:

$$
L=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & -1 & -1 & -1 & 3
\end{array}\right]
$$

Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?

Proposition:

(i) L is symmetric semi-positive definite.
(ii) L is singular with \uparrow as a null vector.
(iii) If G is connected, then $\operatorname{Null}(L)=\operatorname{span}\{1\}$
(iv) If G has $k>1$ connected components $G_{1}, G_{2}, \cdots, G_{k}$, then the nullity of L is k and $\operatorname{Null}(L)$ is spanned by the vectors $z^{(j)}, j=1, \cdots, k$ defined by:

$$
\left(z^{(j)}\right)_{i}=\left\{\begin{array}{l}
1 \text { if } i \in G_{j} \\
0 \text { if not. }
\end{array}\right.
$$

Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly $u=\mathfrak{q}$ is a null vector for L. The vector $\boldsymbol{D}^{-1 / 2} \boldsymbol{u}$ is an eigenvector for the matrix $\boldsymbol{D}^{-1 / 2} \boldsymbol{L} \boldsymbol{D}^{-1 / 2}=$ $I-D^{-1 / 2} W D^{-1 / 2}$ associated with the smallest eigenvalue. It is also an eigenvector for $D^{-1 / 2} W D^{-1 / 2}$ associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that L can be written as a direct sum of the Laplacian matrices for G_{1}, \cdots, G_{k}.

A few properties of graph Laplaceans

Define: oriented incidence matrix \boldsymbol{H} : (1)First orient the edges $i \sim j$ into $i \rightarrow j$ or $j \rightarrow i$. (2) Rows of \boldsymbol{H} indexed by vertices of \boldsymbol{G}. Columns indexed by edges. (3) For each (i, j) in \boldsymbol{E}, define the corresponding column in \boldsymbol{H} as $\sqrt{w(i, j)}\left(e_{i}-e_{j}\right)$.

Example: In previous example (4 p. back) orient $i \rightarrow j$ so that $j>i$ [lower triangular matrix representation]. Then matrix H is:

Property $1 \quad L=\boldsymbol{H} \boldsymbol{H}^{T}$
(202 Re-prove part (iv) of previous proposition by using this property.

A few properties of graph Laplaceans

Strong relation between $x^{T} L x$ and local distances between entries of x
$>$ Let $L=$ any matrix s.t. $L=D-W$, with $D=\operatorname{diag}\left(d_{i}\right)$ and

$$
w_{i j} \geq 0, \quad d_{i}=\sum_{j \neq i} w_{i j}
$$

Property 2: for any $x \in \mathbb{R}^{n}$:

$$
\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=\frac{1}{2} \sum_{i, j} w_{i j}\left|x_{i}-x_{j}\right|^{2}
$$

Property 3: (generalization) for any $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$:

$$
\operatorname{Tr}\left[\boldsymbol{Y} L Y^{\top}\right]=\frac{1}{2} \sum_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}
$$

$>$ Note: $y_{j}=j$-th colunm of Y. Usually $d<n$. Each column can represent a data sample.

Property 4: For the particular $L=I-\frac{1}{n}$ i i $^{\top}$

$$
X L X^{\top}=\bar{X} \bar{X}^{\top}==n \times \text { Covariance matrix }
$$

Property 5: L is singular and admits the null vector 1 =ones (n, 1)

Property 6: (Graph partitioning) Consider situation when $w_{i j} \in\{0,1\}$. If x is a vector of signs (± 1) then

$$
x^{\top} L x=4 \times \text { ('number of edge cuts') }
$$

edge-cut $=$ pair (i, j) with $x_{i} \neq x_{j}$
> Consequence: Can be used to partition graphs

$>$ Would like to minimize $(L x, x)$ subject to $x \in\{-1,1\}^{n}$ and $e^{T} x=0$ [balanced sets]
> WII solve a relaxed form of this problem
\&3 What if we replace x by a vector of ones (representing one partition) and zeros (representing the other)?
π_{0} Let x be any vector and $y=x+\alpha$ 亿 and L a graph Laplacean. Compare ($L x, x$) with $(L y, y)$.

Consider any symmetric (real) matrix A with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{n}$ and eigenvectors u_{1}, \cdots, u_{n}
> Recall that:
(Min reached for $x=\boldsymbol{u}_{1}$)

$$
\min _{x \in \mathbb{R}^{n}} \frac{(A x, x)}{(x, x)}=\lambda_{1}
$$

> In addition:
(Min reached for $x=u_{2}$)

$$
\min _{x \perp u_{1}} \frac{(A x, x)}{(x, x)}=\lambda_{2}
$$

> For a graph Laplacean $u_{1}=1=$ vector of all ones and
$>$...vector u_{2} is called the Fiedler vector. It solves a relaxed form of the problem -

$$
\min _{x \in\{-1,1\}^{n} ;\left\{\left\{^{T}{ }_{x=0}\right.\right.} \frac{(L x, x)}{(x, x)} \quad \rightarrow \quad \min _{x \in \mathbb{R}^{n} ;\left\{^{T}{ }_{x=0}\right.} \frac{(L x, x)}{(x, x)}
$$

$>$ Define $v=u_{2}$ then $l a b=\operatorname{sign}(v-\operatorname{med}(v))$

Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based on Fielder vector
3 Partition largest subgraph in two recursively ...
4 ... Until the desired number of partitions is reached

Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.
2. Geometric techniques. Coordinates are required. [Houstis \& Rice et al., Miller, Vavasis, Teng et al.]
3. Graph Theory techniques - multilevel,... [use graph, but no coordinates]

- Currently best known technique is Metis (multi-level algorithm)
- Simplest idea: Recursive Graph Bisection; Nested dissection (George \& Liu, 1980; Liu 1992]
- Advantages: simplicity - no coordinates required
(05) Run testBis_simple and testMeshPart in matlab class site

Example of a graph theory approach

> Level Set Expansion Algorithm
> Given: p nodes 'uniformly' spread in the graph (roughly same distance from one another).
> Method: Perform a level-set traversal (BFS) from each node simultaneously.
$>$ Best described for an example on a 15×15 five - point Finite Difference grid.
> See [Goehring-YS '94, See Cai-YS '95]
> Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]

