
GRAPH LAPLACEANS AND THEIR APPLICATIONS

• Graph Laplaceans, definitions and basic properties

• Graph partitioning –

• Introduction to clustering

• Graph Embeddings, vertex embeddings . The problem

• Use of Graph Laplaceans, Laplacean Eigenmaps

• Use of similarity graphs: Locally Linear Embeddings

• Explicit dimension reduction method: PCA, LLP, ...

Graph Laplaceans - Definition

ä “Laplace-type” matrices associated with general undirected graphs –
useful in many applications

ä Given a graph G = (V,E) define

A matrix W of weights wij for each edge

Assume wij ≥ 0,, wii = 0, and wij = wji ∀(i, j)
The diagonal matrix D = diag(di) with di =

∑
j 6=iwij

ä Corresponding graph Laplacean of G is: L = D −W

ä Gershgorin’s theorem→ L is positive semidefinite.
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ä Simplest case:

wij =

{
1 if (i, j) ∈ E&i 6= j

0 else
D = diag


di =

∑

j 6=i
wij




Example:
Consider the graph
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L =




1 −1 0 0 0

−1 2 0 0 −1

0 0 1 0 −1

0 0 0 1 −1

0 −1 −1 −1 3



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-1 Define the graph Laplacean for the graph
associated with the simple mesh shown next.
[use the simple weights of 0 or 1]. What is
the difference with the discretization of the
Laplace operator for case when mesh is the
same as this graph? 1 2 3
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Proposition:
(i) L is symmetric semi-positive definite.
(ii) L is singular with 1 as a null vector.
(iii) If G is connected, then Null(L) = span{ 1}
(iv) If G has k > 1 connected components G1, G2, · · · , Gk, then the nullity
of L is k and Null(L) is spanned by the vectors z(j), j = 1, · · · , k defined
by:

(z(j))i =

{
1 if i ∈ Gj

0 if not.
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Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u = 1 is a null vector
for L. The vector D−1/2u is an eigenvector for the matrix D−1/2LD−1/2 =

I − D−1/2WD−1/2 associated with the smallest eigenvalue. It is also an
eigenvector for D−1/2WD−1/2 associated with the largest eigenvalue. By the
Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved
from the fact that L can be written as a direct sum of the Laplacian matrices
for G1, · · · , Gk.
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A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1)First orient the edges i ∼ j into
i→ j or j → i. (2) Rows of H indexed by vertices of G. Columns indexed
by edges. (3) For each (i, j) in E, define the corresponding column in H
as

√
w(i, j)(ei − ej).

Example: In previous example
(4 p. back) orient i → j so that
j > i [lower triangular matrix repre-
sentation]. Then matrix H is:

H =




1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1
0 −1 −1 −1




Property 1 L = HHT

-2 Re-prove part (iv) of previous proposition by using this property.
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A few properties of graph Laplaceans

x

x
j

i

Strong relation between xTLx and local dis-
tances between entries of x
ä Let L = any matrix s.t. L = D −W , with
D = diag(di) and

wij ≥ 0, di =
∑

j 6=i
wij

Property 2: for any x ∈ Rn :

x>Lx =
1

2

∑

i,j

wij|xi − xj|2
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Property 3: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑

i,j

wij‖yi − yj‖2

ä Note: yj = j-th colunm of Y . Usually d < n. Each column can represent
a data sample.

Property 4: For the particular L = I − 1
n

1 1>

XLX> = X̄X̄> == n× Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones(n,1)

17-9 – Glaplacians

Property 6: (Graph partitioning) Consider situation when wij ∈ {0, 1}. If
x is a vector of signs (±1) then

x>Lx = 4× (‘number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used to partition graphs

+1

−1
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ä Would like to minimize (Lx, x) subject to x ∈ {−1, 1}n and eTx = 0

[balanced sets]

ä Wll solve a relaxed form of this problem

-3 What if we replace x by a vector of ones (representing one partition)
and zeros (representing the other)?

-4 Let x be any vector and y = x+α 1 and L a graph Laplacean. Compare
(Lx, x) with (Ly, y).
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ä Consider any symmetric (real) matrix A with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn and eigenvectors u1, · · · , un

ä Recall that:
(Min reached for x = u1)

min
x∈Rn

(Ax, x)

(x, x)
= λ1

ä In addition:
(Min reached for x = u2)

min
x⊥u1

(Ax, x)

(x, x)
= λ2

ä For a graph Laplacean u1 = 1 = vector of all ones and

ä ...vector u2 is called the Fiedler vector. It solves a relaxed form of the
problem -
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min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x) → min
x∈Rn; 1Tx=0

(Lx, x)

(x, x)

ä Define v = u2 then lab = sign(v −med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based on

Fielder vector
3 Partition largest subgraph in

two recursively ...
4 ... Until the desired number of

partitions is reached
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Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice et al.,
Miller, Vavasis, Teng et al.]

3. Graph Theory techniques – multilevel,... [use graph, but no coordinates]

• Currently best known technique is Metis (multi-level algorithm)
• Simplest idea: Recursive Graph Bisection; Nested dissection (George &

Liu, 1980; Liu 1992]
• Advantages: simplicity – no coordinates required

-5 Run testBis simple and testMeshPart in matlab class site
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Example of a graph theory approach

ä Level Set Expansion Algorithm

ä Given: p nodes ‘uniformly’ spread in the graph (roughly same distance
from one another).

ä Method: Perform a level-set traversal (BFS) from each node simultane-
ously.

ä Best described for an example on a 15× 15 five – point Finite Difference
grid.

ä See [Goehring-YS ’94, See Cai-YS ’95]

ä Approach also known under the name ‘bubble’ algorithm and imple-
mented in some packages [Party, DibaP]
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