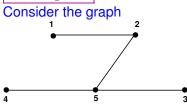
GRAPH LAPLACEANS AND THEIR APPLICATIONS

- Graph Laplaceans, definitions and basic properties
- Graph partitioning -
- Introduction to clustering
- Graph Embeddings, vertex embeddings. The problem
- Use of Graph Laplaceans, Laplacean Eigenmaps
- Use of similarity graphs: Locally Linear Embeddings
- Explicit dimension reduction method: PCA, LLP, ...

> Simplest case:

$$w_{ij} = \left\{egin{array}{ll} 1 & ext{if } (i,j) \in E\&i
eq j \ 0 & ext{else} \end{array}
ight. egin{array}{ll} E\&i
eq j \ 0 \end{array} D = ext{diag} \left[d_i = \sum_{j
eq i} w_{ij}
ight]$$

Example:



$$L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

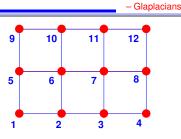
Graph Laplaceans - Definition

- ➤ "Laplace-type" matrices associated with general undirected graphs useful in many applications
- ightharpoonup Given a graph G = (V, E) define
- lacksquare A matrix W of weights w_{ij} for each edge
- lacksquare Assume $w_{ij} \geq 0,, \, w_{ii} = 0, \, ext{and} \, w_{ij} = w_{ji} \, orall (i,j)$
- lacksquare The diagonal matrix $D=diag(d_i)$ with $d_i=\sum_{j
 eq i}w_{ij}$
- \triangleright Corresponding *graph Laplacean* of G is:

$$L = D - W$$

 \triangleright Gershgorin's theorem $\rightarrow L$ is positive semidefinite.

Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?



– Glap

Proposition:

- (i) L is symmetric semi-positive definite.
- (ii) L is singular with 1 as a null vector.
- (iii) If G is connected, then $Null(L) = span\{ 1 \}$
- (iv) If G has k>1 connected components G_1,G_2,\cdots,G_k , then the nullity of L is k and $\mathbf{Null}(L)$ is spanned by the vectors $z^{(j)},\,j=1,\cdots,k$ defined by:

 $(z^{(j)})_i = \left\{egin{array}{ll} 1 & ext{if } i \in G_j \ 0 & ext{if not.} \end{array}
ight.$

Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u=1 is a null vector for L. The vector $D^{-1/2}u$ is an eigenvector for the matrix $D^{-1/2}LD^{-1/2}=I-D^{-1/2}WD^{-1/2}$ associated with the smallest eigenvalue. It is also an eigenvector for $D^{-1/2}WD^{-1/2}$ associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that L can be written as a direct sum of the Laplacian matrices for G_1, \cdots, G_k .

17-5 ______ - Glaplacians

A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1) First orient the edges $i \sim j$ into $i \to j$ or $j \to i$. (2) Rows of H indexed by vertices of G. Columns indexed by edges. (3) For each (i,j) in E, define the corresponding column in H as $\sqrt{w(i,j)}(e_i-e_j)$.

Example: In previous example (4 p. back) orient $i \rightarrow j$ so that j > i [lower triangular matrix representation]. Then matrix H is:

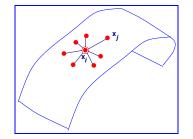
$$H \, = egin{bmatrix} 1 & 0 & 0 & 0 \ -1 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & -1 & -1 & -1 \end{bmatrix}$$

Property 1 $L = HH^T$

Re-prove part (iv) of previous proposition by using this property.

– Glap

A few properties of graph Laplaceans



Strong relation between x^TLx and local distances between entries of x

- Glaplacians

Let L = any matrix s.t. L = D - W, with $D = diag(d_i)$ and

$$w_{ij} \geq 0, \qquad d_i \ = \ \sum_{j
eq i} w_{ij}$$

Property 2: for any $x \in \mathbb{R}^n$:

$$x^ op Lx = rac{1}{2} \sum_{i,j} w_{ij} |x_i - x_j|^2$$

– Glaplacians

Property 3: (generalization) for any $Y \in \mathbb{R}^{d \times n}$:

$$\mathsf{Tr}\left[YLY^ op
ight] = rac{1}{2}\sum_{i,j}w_{ij}\|y_i - y_j\|^2$$

Note: $y_j = j$ -th column of Y. Usually d < n. Each column can represent a data sample.

Property 4: For the particular $L = I - \frac{1}{n} \mathbb{1} \mathbb{1}^{\top}$

$$XLX^{\top} = \bar{X}\bar{X}^{\top} == n \times \text{Covariance matrix}$$

Property 5: L is singular and admits the null vector

1 = ones(n, 1)

9_______ – Glapla

- lackbox Would like to minimize (Lx,x) subject to $x\in\{-1,1\}^n$ and $e^Tx=0$ [balanced sets]
- > Wll solve a relaxed form of this problem

What if we replace x by a vector of ones (representing one partition) and zeros (representing the other)?

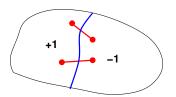
Let x be any vector and $y=x+\alpha$ 1 and L a graph Laplacean. Compare (Lx,x) with (Ly,y).

Property 6: (Graph partitioning) Consider situation when $w_{ij} \in \{0, 1\}$. If x is a vector of signs (± 1) then

$$x^{\top}Lx = 4 \times \text{('number of edge cuts')}$$

edge-cut = pair (i, j) with $x_i \neq x_j$

➤ Consequence: Can be used to partition graphs



17-10 ______ - Glaplacia

- ightharpoonup Consider any symmetric (real) matrix A with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and eigenvectors u_1, \cdots, u_n
- igwedge Recall that: $\min_{x\in\mathbb{R}^n}rac{(Ax,x)}{(x,x)}=\lambda_1$
- lacksquare In addition: $\min_{x\perp u_1} \frac{(Ax,x)}{(x,x)} = \lambda_2$
- For a graph Laplacean $u_1 = 1$ = vector of all ones and
- ightharpoonup ...vector u_2 is called the Fiedler vector. It solves a relaxed form of the problem -

- I7-11 ______ — Glaplacian

– Glaplaciar

$\min_{oldsymbol{x} \in \{-1,1\}^n; \ extstyle \ extstyle T} rac{(Lx,x)}{(x,x)}$

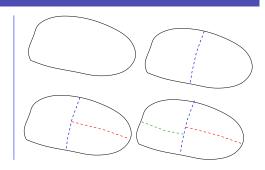
 \rightarrow

$$\min_{oldsymbol{x} \in \mathbb{R}^{oldsymbol{n}_{i}}; \ \ egin{subarray}{c} \prod^{T} x = 0 \end{array} rac{(Lx,x)}{(x,x)}$$

lacksquare Define $v=u_2$ then lab=sign(v-med(v))

Recursive Spectral Bisection

- 1 Form graph Laplacean
- **2** Partition graph in 2 based on Fielder vector
- **3** Partition largest subgraph in two recursively ...
- 4 ... Until the desired number of partitions is reached



- Glaplacians

7-13 ______ – Glaplacians

Three approaches to graph partitioning:

- 1. Spectral methods Just seen + add Recursive Spectral Bisection.
- 2. Geometric techniques. Coordinates are required. [Houstis & Rice et al., Miller, Vavasis, Teng et al.]
- 3. Graph Theory techniques multilevel,... [use graph, but no coordinates]
 - Currently best known technique is Metis (multi-level algorithm)
 - Simplest idea: Recursive Graph Bisection; Nested dissection (George & Liu, 1980; Liu 1992]
 - Advantages: simplicity no coordinates required

Run testBis_simple and testMeshPart in matlab class site

Example of a graph theory approach

- ➤ Level Set Expansion Algorithm
- ➤ Given: *p* nodes 'uniformly' spread in the graph (roughly same distance from one another).
- ➤ Method: Perform a level-set traversal (BFS) from each node simultaneously.
- ightharpoonup Best described for an example on a 15 imes 15 five point Finite Difference grid.
- > See [Goehring-YS '94, See Cai-YS '95]
- ➤ Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]

- Glaplacians

- Glaplacians

