GRAPH LAPLACEANS AND THEIR APPLICATIONS

» Graph Laplaceans, definitions and basic properties

* Graph partitioning —

* Introduction to clustering

» Graph Embeddings, vertex embeddings . The problem
» Use of Graph Laplaceans, Laplacean Eigenmaps
 Use of similarity graphs: Locally Linear Embeddings

* Explicit dimension reduction method: PCA, LLRP, ...

Graph Laplaceans - Definition

» “Laplace-type” matrices associated with general undirected graphs —
useful in many applications

» Given a graph G = (V, E) define
A matrix W of weights w;; for each edge
Assume Wi > 0,, w; =0, and W;; = Wy; V(’L, ])

The diagonal matrix D = diag(d;) with d; = Z#i wi;

» Corresponding graph Laplacean of G is: L=D-WwW

» Gershgorin’s theorem — L is positive semidefinite.
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» Simplest case:

Define the graph Laplacean for the graph

. . . 9 10 11 12
associated with the simple mesh shown next.
o ., use the simple weights of 0 or 1]. What is
) 1if (4,5) € E&i #j L o [ . P . g . . ] 5 6 7 8
Wii =910 else D = diag |d; = Z'wij the difference with the discretization of the
J# Laplace operator for case when mesh is the
same as this graph? 1 2 3 4
Consider the graph 1 -1 0 0 O
! 2 -1 2 0 0 -1
L=|0o 0o 1 0 -1
0 0 0 1 -1
. < . 0o -1 -1 -1 3
4 5 3
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Proposition:

i) L is symmetric semi-positive definite.

ii) L is singular with 1 as a null vector.

i) If G is connected, then Null(L) = span{ 1}

iv) If G has k > 1 connected components G, G, - -

(
(
(
( -, Gy, then the nullity

of L is k and Null(L) is spanned by the vectors zU), j = 1, ... , k defined
by:
. 1if1 € Gy
Yy, — J
(=i {0 if not.
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Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly v = 1 is a null vector
for L. The vector D~/ is an eigenvector for the matrix D~Y/2LD~'/? =
I — D~Y?WD~"/? associated with the smallest eigenvalue. It is also an
eigenvector for D—'/2W D~'/2? associated with the largest eigenvalue. By the
Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved
from the fact that L can be written as a direct sum of the Laplacian matrices
for Gi,--- ,Gr. H
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A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1)First orient the edges ¢ ~ j into
i — jor 37 — 4. (2) Rows of H indexed by vertices of G. Columns indexed
by edges. (3) For each (4, 3) in E, define the corresponding column in H

as Jw(i,j)(e; — e;).

In previous example 1 0 0 0
7 back) ori ) ) h -1 1 0 0
(4 p. back) orient ¢ — j so that H=10 0 1 0
j > 1 [lower triangular matrix repre- 0 0 O 1

0 -1 -1 -1

sentation]. Then matrix H is:

Re-prove part (iv) of previous proposition by using this property.
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Property 1

A few properties of graph Laplaceans

Strong relation between =z Lz and local dis-
tances between entries of x

» Let L = any matrix s.t. L = D — W, with
D = diag(d;) and

w;; > 0, d; = Zwij

J#i

Property 2: forany z € R™:

- 1
x' Lz = waiﬂwi —x;
2 —
l?J
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Property 3: (generalization) for any Y € R4*" :
1
TYLY '] = 3 Z’wz’jﬂyi — yl?
2
» Note: y; = j-th colunm of Y. Usually d < n. Each column can represent
a data sample.
Property 4: For the particular L =1 —211917

XLXT = XXT == n x Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones (n, 1)
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Property 6: (Graph partitioning) Consider situation when w;; € {0,1}. If
x is a vector of signs (+1) then

x' Lz = 4 x (‘number of edge cuts’)
edge-cut = pair (¢, j) with x; # «x;

» Consequence: Can be used to partition graphs
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» Would like to minimize (Lz,x) subjectto x € {—1,1}" and eTz = 0
[balanced sets]

» WIl solve a relaxed form of this problem

What if we replace = by a vector of ones (representing one partition)
and zeros (representing the other)?

Let 2 be any vector and y = =+« 1 and L a graph Laplacean. Compare
(Lx, z) with (Ly, y).
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» Consider any symmetric (real) matrix A with eigenvalues A; < Xy <
.-+ < A, and eigenvectors wy, - - -, uy,

» Recall that: . (Az,x)
. min ——= = )\;
(Min reached for = u,) vk (x, x)
» In addition: . (Az,x)
min Az

(Min reached for z = u,) alu (@,m)

» For a graph Laplacean u; = 1 = vector of all ones and

» ..vector u, is called the Fiedler vector. It solves a relaxed form of the
problem -
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. (Lzx, )
min

: (Lz, x)
min
ze{-1,1}7 1Tz=0 (z, x) -

z€R™; ﬂT:t=0 (il}, w)

» Define v = uy then lab = sign(v — med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based on
Fielder vector

3 Partition largest subgraph in .
two recursively ...

4 ... Until the desired number of
partitions is reached
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Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice et al.,
Miller, Vavasis, Teng et al.]

3. Graph Theory techniques — multilevel,... [use graph, but no coordinates]

* Currently best known technique is Metis (multi-level algorithm)

» Simplest idea: Recursive Graph Bisection; Nested dissection (George &
Liu, 1980; Liu 1992]
» Advantages: simplicity — no coordinates required

Run testBis_simple and testMeshPart in matlab class site
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Example of a graph theory approach

» Level Set Expansion Algorithm

» Given: p nodes ‘uniformly’ spread in the graph (roughly same distance
from one another).

» Method: Perform a level-set traversal (BFS) from each node simultane-
ously.

» Best described for an example on a 15 x 15 five — point Finite Difference
grid.

» See [Goehring-YS '94, See Cai-YS '95]

» Approach also known under the name ‘bubble’ algorithm and imple-
mented in some packages [Party, DibaP]
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