SUPERVISED LEARNING - (Brief)

» Supervised learning; basics; labeled data

o Classification problems; KNN classification

e Linear Classifiers; Fisher Lin. Discrimants

» Support Vector Machines; Deep Neural Networks



Major tool of Data Mining: Dimension reduction

» Goal is not as much to reduce size (& cost) but to:

» Reduce noise and redundancy in data before performing a task [e.g., clas-
sification as in digit/face recognition]

 Discover important ‘features’ or ‘paramaters’

The problem: | Given: X = [x1,---,x,] € R™*" find a low-dimens.

representation Y = [y, --- ,y,] € R>¥"of X

» Achieved by amapping @®:2 ¢ R™ — y € R  so:

qb(wz):yza t=1,---,n
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» dmaybelinear: y;=W'z;, Vj,onY = W'X
» ... or nonlinear (implicit).

» Mapping ® required to: Preserve proximity? Maximize variance? Pre-
serve a certain graph?
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Basics: Principal Component Analysis (PCA)

PCA: Compute W " . 2
to maximize variance max i == wil| » vi=W'as
. WeRMXd. W TW=T - n <
of projected data: i=1 =1 |,

» Leads to maximizing

Tr [WT(X — pe’ ) (X — ueT)TW] y M= %E?lei

» Solution W = { dominant eigenvectors } of the covariance matrix = Set
of left singular vectors of X = X — pe’
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SVD:

X=UxV', U'U=1, V'V=1I, ¥ =Diag

» Optimal W = U; = matrix of first d columns of U

» Solution W also minimizes ‘reconstruction error’ ..

Dz = WW | = > " [lai — Wyl

» |In some methods recentering to zero is not done, i.e., X replaced by X.
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Unsupervised learning

“Unsupervised learning” : methods do
not exploit labeled data
» Example of digits: perform a 2-D pro-
jection
» Images of same digit tend to cluster
(more or less)
» Such 2-D representations are popular
for visualization
» (Can also try to find natural clusters in
data, e.g., in materials
» Basic clusterning technique: K-means

19-6

PCA —digits : 5 —7

5
4
3k
2
1
0

2
3
o
4
5

~N o O

. s 8
Photovoltaic

Superhard
Superconductors
.
Ferromagnetic
: Catalytic

Multi-ferroics Thermo-electric

— DR1

|
2




Example: Digit images (a random sample of 30)
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2-D ’reductions’:

PCA - digits : 0 —— 4
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Supervised learning

» We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- 'non malignant’) ; Materials ("pho-

tovoltaic’, ’hard’, ‘conductor’, ...) ; Digit Recognition ('0’, ’1’, ....,’9)
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Supervised learning: classification

e ]

. | | [
ples (training sgt), and an Training data Test data
(unlabeled) test image .

Problem: label of x ="

Digfit 1
Digit 2
Digit 9
Digit ??

digits recognition example

» Best illustration: written HH

——————— Digit0

uolonpal uoisuswiq

1 Digit 22

» Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

» |dea of a voting system: get
distances between test sample and 4 =

training samples L R
* v m

» Get the k nearest neighbors (here | GRS

k = 8) v v *'o* o

\\\\_,__,—”/ ® o

» Predominant class among these k. v v ¥ * ®

items is assigned to the test sample v

(“*” here)
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.
»  Example of application:
Distinguish between SPAM PY
and non-SPAM e-mails

Linear
classifier

» Note: The world in non-linear. Often this is combined with Kernels —
amounts to changing the inner product




A harder case: I

Spectral Bisection (PDDP)
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» Use kernels to transform
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Projection with Kernels —— 0% = 2.7463
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Simple linear classifiers

» Let X = [x4,---,x,] De the data matrix.

» and L = [ly,---,l,]==labels. I; = £+1
» 1st Solution: Find a vector v such that
uTx; close to I;, Vi

» Common solution: SVD to reduce
dimension of data [e.g. 2-D] then do com-
parison in this space. e.g.

A: ’U,Tmi >0, B:’U,Tw,; <0

[For clarity: principal axis w drawn below where it should be]
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Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can
‘discriminate’ well between classes

» Define “between scatter”. a measure of how well separated two distinct
classes are.

» Define “within scatter”: a measure of how well clustered items of the same
class are.

» Objective: make “between scatter” measure large and “within scatter”
small.

Idea: Find projector that maximizes the ratio of the “between scatter”
measure over “within scatter” measure
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e 1 = mean (X)
Sg = » mp(p® — p)(p® — )7, e 1 =mean (X})
=l where:
Sw = S: S: (x; — p®) (x; — pPNT e X, = k-th class
k=1 z; €X;
o ny; = | Xl

B CLUSTER CENTROIDS
% GLOBAL CENTROID

X3




a"Spa = Y mny " (u®) — p))?,

» (Consider 2nd mo- i—1
ments for a vector a: <
alSwa = Sj Sj laT (x; — p®))|?
k=1 x; € X

» al'Spa = weighted variance of projected p;’s

» al'Swa = w. sum of variances of projected classes X’s

» LDA projects the data so as to maximize the
ratio of these two numbers:

» Optimal a = eigenvector asso-

ciated with top eigenvalue of:
19-20

alSga

Imax

a alSwa
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LDA — Extension to arbitrary dimensions

» Criterion: maximize the ratio of two Tr [uTspU]
traces: Trurswu

» Constraint: UTU = I (orthogonal projector).
» Reduced dimensiondata: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

» ... alternative: Solve instead the max  Tr [UTSzU]
(‘easier’) problem: UTSwU=I

» Solution: largest eigenvectors of Spu; = \;Swu; .
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In Brief: Support Vector Machines (SVM)

» Similar in spirit to LDA. Formally, SVM finds a hyperplane that best
separates two training sets belonging to two classes.

» If the hyperplane is: wlz +b=0

» Then the classifier is  f(z) = sign(w’z + b) : assigns y = +1 to one
class and y = —1 to other

» Normalize parameters w, b by looking for hyperplanes of the form wlx +
b > 1 to include one set and w'z 4+ b < —1 to include the other.

» With y; = +1 for one class and y; = —1 for the other, we can write the
constraints as y;(w!x; + b) > 1.
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: Y m
constraint y;(wTz; + b) > 1. /,"\,’ . i}
// // [}
’ |
» As it turns out the margin is equal to: ~ = ”5”2

#n1| Prove it.
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» Need to solve the con-
strained quadratic program-
ming problem:

min
w.b

S.t.

1

2
—[|W
~llwll:

yi(wlx; +b) > 1, Va,.

Modification 1: Soft margin. Consider hinge loss: max{0, 1 — y;[w’z; + b]}

» Zero if constraint satisfied for pair x;, y;. Otherwise proportional to dis-
tance from corresponding hyperplane. Hence we can minimize

1 n
Mlwl® + =3 max{0,1 — y;[w"a; + b}
n =1

between «x; and hyperplane |wlfz; + b = +1

#2] Suppose y; = +1 and let d; = 1 — y;[wTz; + b]. Show that the distance

IS d;/||w]|.

Modification 2 : Use in combination with a Kernel to improve separability
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A few words on Deep Neural Networks (DNNs)

» |deas of neural networks goes back to the 1960s - were popularized in
early 1990s — then laid dormant until recently.

» Two reasons for the come-back:

 DNN are remarkably effective in some applications

* big progress made in hardware [— affordable ‘training cost’]
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» Training a neural network can be viewed as a problem of approximating
a function ¢ which is defined via sets of parameters:
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Problem: |find sets of parameters such that ¢(x) = y
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Input: =, Output: y
Set: 20 =<
Forl=1:1+1 Do:

z=0(Wlz_1+b)

End
Set: y = ¢(x) = zr+1

e layer # 0 = input layer

e layer # (L + 1) = output layer

S
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» A matrix W, is associated with layers 1,2, L + 1.

» Problem:

19-27

Find ¢ (i.e., matrices W) s.t. ¢(x) = y

Layer Layer
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DNN (continued)

» Problem is not convex, highly parameterized, ...,

» .. Main method used: Stochastic gradient descent [basic]

» |t all looks like alchemy... but it works well for certain applications
» Training is still quite expensive — GPUs can help

» *\lery* active area of research
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