
SUPERVISED LEARNING - (Brief)

• Supervised learning; basics; labeled data

• Classification problems; KNN classification

• Linear Classifiers; Fisher Lin. Discrimants

• Support Vector Machines; Deep Neural Networks



Major tool of Data Mining: Dimension reduction

ä Goal is not as much to reduce size (& cost) but to:

• Reduce noise and redundancy in data before performing a task [e.g., clas-
sification as in digit/face recognition]

• Discover important ‘features’ or ‘paramaters’

The problem: Given: X = [x1, · · · , xn] ∈ Rm×n, find a low-dimens.

representation Y = [y1, · · · , yn] ∈ Rd×n of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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ä Φ may be linear : yj = W>xj, ∀j, or, Y = W>X

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize variance? Pre-
serve a certain graph?
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Basics: Principal Component Analysis (PCA)

PCA: Compute W

to maximize variance
of projected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä Solution W = { dominant eigenvectors } of the covariance matrix ≡ Set
of left singular vectors of X̄ = X − µe>
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SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑
i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄ replaced by X.
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Unsupervised learning

“Unsupervised learning” : methods do
not exploit labeled data
ä Example of digits: perform a 2-D pro-
jection
ä Images of same digit tend to cluster
(more or less)
ä Such 2-D representations are popular
for visualization
ä Can also try to find natural clusters in
data, e.g., in materials
ä Basic clusterning technique: K-means
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Example: Digit images (a random sample of 30)
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2-D ’reductions’:
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SUPERVISED LEARNING



Supervised learning

ä We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’, ...., ’9’)
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Supervised learning

ä We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’, ...., ’9’)
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Supervised learning: classification

ä Best illustration: written
digits recognition example

Given: set of labeled sam-
ples (training set), and an
(unlabeled) test image x.
Problem: label of x =?
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ä Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample and
training samples

ä Get the k nearest neighbors (here
k = 8)

ä Predominant class among these k
items is assigned to the test sample
(“∗” here)
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.
ä Example of application:
Distinguish between SPAM
and non-SPAM e-mails

Linear

classifier

ä Note: The world in non-linear. Often this is combined with Kernels –
amounts to changing the inner product
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A harder case:
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ä Use kernels to transform
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Transformed data with a Gaussian Kernel
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Simple linear classifiers

ä Let X = [x1, · · · , xn] be the data matrix.

ä and L = [l1, · · · , ln]== labels. li = ±1

ä 1st Solution: Find a vector u such that
uTxi close to li, ∀i

ä Common solution: SVD to reduce
dimension of data [e.g. 2-D] then do com-
parison in this space. e.g.

A: uTxi ≥ 0 , B: uTxi < 0

v

[For clarity: principal axis u drawn below where it should be]
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Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can
‘discriminate’ well between classes

ä Define “between scatter”: a measure of how well separated two distinct
classes are.

ä Define “within scatter”: a measure of how well clustered items of the same
class are.

ä Objective: make “between scatter” measure large and “within scatter”
small.

Idea: Find projector that maximizes the ratio of the “between scatter”
measure over “within scatter” measure
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SB =

c∑
k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =

c∑
k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T
where:

• µ = mean (X)

• µ(k) = mean (Xk)

• Xk = k-th class

• nk = |Xk|
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ä Consider 2nd mo-
ments for a vector a:

aTSBa =

c∑
i=1

nk |aT (µ(k) − µ)|2,

aTSWa =

c∑
k=1

∑
xi ∈ Xk

|aT (xi − µ(k))|2

ä aTSBa ≡ weighted variance of projected µj’s

ä aTSWa ≡ w. sum of variances of projected classes Xj’s

ä LDA projects the data so as to maximize the
ratio of these two numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector asso-
ciated with top eigenvalue of:

SBui = λiSWui .
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LDA – Extension to arbitrary dimensions

ä Criterion: maximize the ratio of two
traces:

Tr [UTSBU ]

Tr [UTSWU ]

ä Constraint: UTU = I (orthogonal projector).

ä Reduced dimension data: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

ä ... alternative: Solve instead the
(‘easier’) problem:

max
UTSWU=I

Tr [UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .
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In Brief: Support Vector Machines (SVM)

ä Similar in spirit to LDA. Formally, SVM finds a hyperplane that best
separates two training sets belonging to two classes.

ä If the hyperplane is: wTx+ b = 0

ä Then the classifier is f(x) = sign(wTx+ b) : assigns y = +1 to one
class and y = −1 to other

ä Normalize parameters w, b by looking for hyperplanes of the form wTx+

b ≥ 1 to include one set and wTx+ b ≤ −1 to include the other.

ä With yi = +1 for one class and yi = −1 for the other, we can write the
constraints as yi(wTxi + b) ≥ 1.
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ä The margin is the maximum
distance between two such
planes: goal find w, b to maximize
margin.

ä Maximize margin subject to the
constraint yi(wTxi + b) ≥ 1. γ

ä As it turns out the margin is equal to: γ = 2
‖w‖2

-1 Prove it.
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ä Need to solve the con-
strained quadratic program-
ming problem:

min
w.b

1

2
‖w‖2

2

s.t. yi(w
Txi + b) ≥ 1, ∀xi.

Modification 1: Soft margin. Consider hinge loss: max{0, 1−yi[wTxi+b]}

ä Zero if constraint satisfied for pair xi, yi. Otherwise proportional to dis-
tance from corresponding hyperplane. Hence we can minimize

λ‖w‖2 +
1

n

n∑
i=1

max{0, 1− yi[wTxi + b]}

-2 Suppose yi = +1 and let di = 1− yi[wTxi + b]. Show that the distance
between xi and hyperplane wTxi + b = +1 is di/‖w‖.

Modification 2 : Use in combination with a Kernel to improve separability
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A few words on Deep Neural Networks (DNNs)

ä Ideas of neural networks goes back to the 1960s - were popularized in
early 1990s – then laid dormant until recently.

ä Two reasons for the come-back:

• DNN are remarkably effective in some applications

• big progress made in hardware [→ affordable ‘training cost’]
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ä Training a neural network can be viewed as a problem of approximating
a function φ which is defined via sets of parameters:
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Problem: find sets of parameters such that φ(x) ≈ y
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Input: x, Output: y
Set: z0 = x

For l = 1 : L+1 Do:
zl = σ(W T

l zl−1 + bl)

End
Set: y = φ(x) := zL+1

• layer # 0 = input layer
• layer # (L+ 1) = output layer Layer

Input

Layer

OutputHidden

Layer

ä A matrix Wl is associated with layers 1,2, L+ 1.

ä Problem: Find φ (i.e., matrices Wl) s.t. φ(x) ≈ y
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DNN (continued)

ä Problem is not convex, highly parameterized, ...,

ä .. Main method used: Stochastic gradient descent [basic]

ä It all looks like alchemy... but it works well for certain applications

ä Training is still quite expensive – GPUs can help

ä *Very* active area of research
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