SUPERVISED LEARNING - (Brief)

» Supervised learning; basics; labeled data

* Classification problems; KNN classification

* Linear Classifiers; Fisher Lin. Discrimants

» Support Vector Machines; Deep Neural Networks

Major tool of Data Mining: Dimension reduction

» Goal is not as much to reduce size (& cost) but to:

» Reduce noise and redundancy in data before performing a task [e.g., clas-
sification as in digit/face recognition]

* Discover important ‘features’ or ‘paramaters’

The problem: | Given: X = [z,---,z,] € R™*", find a low-dimens.

representation Y = [y, -+ ,y,] € R¥>*"of X
> Achieved by amapping ®:z e R" —y € R* so:

¢(mz):yza i:]-""’n

of projected data:
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» ®maybelinear: y;=W'z;, Vj,onY = W'X
» ... or nonlinear (implicit).

» Mapping ® required to: Preserve proximity? Maximize variance? Pre-
serve a certain graph?

19-3 - DR1

» Leads to maximizing

T WX —pe ) (X —pe")TW], p=% 2

» Solution W = { dominant eigenvectors } of the covariance matrix = Set
of left singular vectors of X = X — pe’
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SVD:

X=UxVT, U'U=1, V'V=1I, ¥ =Diag

» Optimal W = U, = matrix of first d columns of U

» Solution W also minimizes ‘reconstruction error’ ..

D e = WWTa||? =) [l — Wyil|?
[ A

» In some methods recentering to zero is not done, i.e., X replaced by X.
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Unsupervised learning

“Unsupervised learning” : methods do
not exploit labeled data
» Example of digits: perform a 2-D pro-
jection
» Images of same digit tend to cluster
(more or less)

» Such 2-D representations are popular
for visualization

» Can also try to find natural clusters in
data, e.g., in materials

» Basic clusterning technique: K-means
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PCA - digits : 5 ——7
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Example: Digit images (a random sample of 30)
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‘ 2-D ’reductions’:

PCA - digits : 0 —— 4

LLE - digits : 0 -— 4
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SUPERVISED LEARNING

Supervised learning

» We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- 'non malignant’) ; Materials (‘pho-
tovoltaic’, ’hard’, ‘conductor’, ...) ; Digit Recognition ('0’,’1’, ....,’9’)
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Supervised learning

» We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- 'non malignant’) ; Materials (‘pho-
tovoltaic’, ’hard’, ‘conductor’, ...) ; Digit Recognition ('0’,’1’, ....,’9’)
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Supervised learning: classification

» Best illustration: written T ® .

digits recognition example WWWW mEw NW N o

Given: set of labeled sam- | B §

ples (training set), and an Training data et data %

(unlabeled) test image . 5

Problem: label of = =? s £ s s & s
ooooooooocon - - - odln 0

» Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification Supervised learning: Linear classification

» |dea of a voting system: get
distances between test sample and .

training samples . -v = . Linear classifiers: Find a hy-
> Get the k { neighbors (h Yo by m perplane which best separates
et the k nearest neighbors (here : .
9 BN the data in classes A and B.
k= 8) Sy v M®e e . .
N e » Example of application:
> Predominant class among these kv v 7 * ¢ Distinguish  between SPAM °®
items is assigned to the test sample v and non-SPAM e-mails )
(“«” here) Linear
classifier
» Note: The world in non-linear. Often this is combined with Kernels —
amounts to changing the inner product
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A harder case: . Projection with Kernels —— 0°=2.7463
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» Use kernels to transform Transformed data with a Gaussian Kernel
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Simple linear classifiers

» Let X = [x1,--- ,z,] be the data matrix.

» and L = [ly,--- ,l,]==labels. I, = +1
» 1st Solution: Find a vector u such that
uTx; close to I;, Vi

» Common solution: SVD to reduce
dimension of data [e.g. 2-D] then do com-
parison in this space. e.g.

A:uTx; >0,B:ulz; <0

[For clarity: principal axis « drawn below where it should be]
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Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can
‘discriminate’ well between classes

» Define “between scatter”: a measure of how well separated two distinct
classes are.

» Define “within scatter”: a measure of how well clustered items of the same
class are.

» Objective: make “between scatter” measure large and “within scatter”
small.

Idea: Find projector that maximizes the ratio of the “between scatter”
measure over “within scatter” measure
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e u = mean (X)

S =Y m(p® — p)(u® - ",

n®) = mean (Xy)

Sw = Z Z (z; — p®)(z; — p®)T e X; = k-thclass
k=1 z; € Xy

® N = |Xk|
B CLUSTER CENTROIDS
% GLOBAL CENTROID

c
_ a’Spa =Y i o (u®) — p)|?,
» Consider 2nd mo- i=1

ments for a vector a: -
aTSwa = Z Z laT (z; — p®)|?
k=1 x; € Xj,
» a’Sga = weighted variance of projected p;’s

» aTSwa = w. sum of variances of projected classes X;’s

X
1
X, » LDA projects the data so as to maximize the max a’Spa
F e ratio of these two numbers: a alSwa
X,
>. Optlmal a= ggenvector asso- Spu; = A\iSw,s .
ciated with top eigenvalue of:
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LDA - Extension to arbitrary dimensions

» Criterion: maximize the ratio of two
traces:

Tr wTspU)

Ir [UTswU)

» Constraint: UTU = I (orthogonal projector).
» Reduced dimension data: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

» ... alternative: Solve instead the
(‘easier’) problem:

max Tr[UTSpU]
UTSwU=I

» Solution: largest eigenvectors of  Spu; = \;Swu; .

In Brief: Support Vector Machines (SVM)

»  Similar in spirit to LDA. Formally, SVM finds a hyperplane that best
separates two training sets belonging to two classes.

» If the hyperplane is: wlz +b=0

» Then the classifier is f(z) = sign(w”= + b) : assigns y = +1 to one
class and y = —1 to other

» Normalize parameters w, b by looking for hyperplanes of the form w”x +
b > 1 to include one set and w”z + b < —1 to include the other.

» With y; = +1 for one class and y; = —1 for the other, we can write the
constraints as y;(wTz; + b) > 1.
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) °

° » Need to solve the con- 1 ,
4 . . 1 —
» The margin is the maximum ° A strained quadratic program- min - _jw]
distance between two such o o o [ Jom ming problem: st yi(w'z; +b) > 1, Va,.
22?;.: goal find w, b to maximize e o ,0" /' L] " Modification 1: Soft margin. Consider hinge loss: max{0, 1 — y;[wTz; +b]}
in. ° p ,
L ," ,1.' m = » Zero if constraint satisfied for pair x;, y;. Otherwise proportional to dis-

» Maximize margin subject to the
constraint y; (wTz; + b) > 1.
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» As it turns out the margin is equal to: ~ =

Prove it.
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tance from corresponding hyperplane. Hence we can minimize

1 n
Allw||? + ~ > max{0,1 — y;[w"z; + b]}
=1

Suppose y; = +1 and let d; = 1 — y;[wTx; + b]. Show that the distance
between z; and hyperplane [w”z; + b = +1| is di/||w]|.

Modification 2 : Use in combination with a Kernel to improve separability
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A few words on Deep Neural Networks (DNNs)

» ldeas of neural networks goes back to the 1960s - were popularized in
early 1990s — then laid dormant until recently.

» Two reasons for the come-back:

* DNN are remarkably effective in some applications

* big progress made in hardware [— affordable ‘training cost’]
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» Training a neural network can be viewed as a problem of approximating
a function ¢ which is defined via sets of parameters:

'l
a“‘e\e
\Y
QO

S
6\&‘
R

<® se‘o
o e

o’
O %
O v,
ol -
ol -
ol .
O Ym

Problem: |find sets of parameters such that ¢(z) = y
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Input: z, Output: y 7 m
e SO e

For! =1:1+1 Do: XL SO S

& X 'AXA&

z=0c(Wlz_1+ b)) TR SISO
A S K

End éf“é@'?fé"é%‘%‘fé‘o
) o\ s

Set. Yy = ¢($) ‘= ZL+1 /,“\% ‘%:é /!'A\\.

WA

e layer # 0 = input layer
e layer # (L + 1) = output layer

Input Hidden utpu
O La';l:;r . Layer O ?.a:/?;r!
» A matrix W, is associated with layers 1,2, L + 1.

> Problem: Find ¢ (i.e., matrices W;) s.t. ¢(z) = y
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DNN (continued)

» Problem is not convex, highly parameterized, ...,

» .. Main method used: Stochastic gradient descent [basic]

» It all looks like alchemy... but it works well for certain applications
» Training is still quite expensive — GPUs can help

» *Very™* active area of research
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