SUPERVISED LEARNING - (Brief)

- Supervised learning; basics; labeled data

- Classification problems; KNN classification
- Linear Classifiers; Fisher Lin. Discrimants
- Support Vector Machines; Deep Neural Networks

Major tool of Data Mining: Dimension reduction

> Goal is not as much to reduce size (\& cost) but to:

- Reduce noise and redundancy in data before performing a task [e.g., classification as in digit/face recognition]
- Discover important 'features' or 'paramaters'

The problem: Given: $X=\left[x_{1}, \cdots, x_{n}\right] \in \mathbb{R}^{m \times n}$, find a low-dimens. representation $\boldsymbol{Y}=\left[y_{1}, \cdots, y_{n}\right] \in \mathbb{R}^{d \times n}$ of \boldsymbol{X}
$>$ Achieved by a mapping $\quad \Phi: x \in \mathbb{R}^{m} \longrightarrow y \in \mathbb{R}^{d} \quad$ so:

$$
\phi\left(x_{i}\right)=y_{i}, \quad i=1, \cdots, n
$$

19-2
Basics: Principal Component Analysis (PCA)

PCA: Compute W to maximize variance of projected data:

$$
\max _{W \in \mathbb{R}^{m \times d} ; W^{\top} W=I} \sum_{i=1}^{n}\left\|y_{i}-\frac{1}{n} \sum_{j=1}^{n} y_{j}\right\|_{2}^{2}, y_{i}=W^{\top} x_{i} .
$$

$>$ Leads to maximizing

$$
\operatorname{Tr}\left[W^{\top}\left(X-\mu e^{\top}\right)\left(X-\mu e^{\top}\right)^{\top} W\right], \quad \mu=\frac{1}{n} \Sigma_{i=1}^{n} x_{i}
$$

$>$ Solution $W=\{$ dominant eigenvectors $\}$ of the covariance matrix \equiv Set of left singular vectors of $\bar{X}=X-\mu e^{\top}$

SVD:

$$
\bar{X}=U \Sigma V^{\top}, \quad U^{\top} U=I, \quad V^{\top} V=I, \quad \Sigma=\text { Diag }
$$

$>$ Optimal $W=U_{d} \equiv$ matrix of first d columns of U
$>$ Solution W also minimizes 'reconstruction error' ..

$$
\sum_{i}\left\|x_{i}-W W^{T} x_{i}\right\|^{2}=\sum_{i}\left\|x_{i}-W y_{i}\right\|^{2}
$$

$>$ In some methods recentering to zero is not done, i.e., $\overline{\boldsymbol{X}}$ replaced by \boldsymbol{X}.

Example: Digit images (a random sample of 30)

Unsupervised learning

"Unsupervised learning"
 methods do

 not exploit labeled data> Example of digits: perform a 2-D projection
> Images of same digit tend to cluster (more or less)
> Such 2-D representations are popular for visualization
> Can also try to find natural clusters in data, e.g., in materials
> Basic clusterning technique: K-means

2-D 'reductions':

Basic method: K-nearest neighbors (KNN) classification

> Idea of a voting system: get distances between test sample and training samples
$>$ Get the k nearest neighbors (here $k=8)$
$>$ Predominant class among these k items is assigned to the test sample ("*" here)

19-13

> Note: The world in non-linear. Often this is combined with Kernels amounts to changing the inner product 19-14

A harder case:

> Use kernels to transform

Linear classifiers: Find a hyperplane which best separates the data in classes A and B. > Example of application: Distinguish between SPAM and non-SPAM e-mails
Supervised learning: Linear classification

Transformed data with a Gaussian Kernel

Simple linear classifiers

$>$ Let $X=\left[x_{1}, \cdots, x_{n}\right]$ be the data matrix.
$>$ and $L=\left[l_{1}, \cdots, l_{n}\right]==$ labels. $l_{i}= \pm 1$ $>$ 1st Solution: Find a vector u such that $u^{T} x_{i}$ close to $l_{i}, \forall i$
> Common solution: SVD to reduce dimension of data [e.g. 2-D] then do comparison in this space. e.g.

$$
\text { A: } \boldsymbol{u}^{T} \boldsymbol{x}_{i} \geq 0, \mathrm{~B}: \boldsymbol{u}^{T} \boldsymbol{x}_{i}<0
$$

[For clarity: principal axis u drawn below where it should be]
19-17

Fisher's Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can 'discriminate' well between classes
> Define "between scatter": a measure of how well separated two distinct classes are.
> Define "within scatter": a measure of how well clustered items of the same class are.
> Objective: make "between scatter" measure large and "within scatter" small.

Idea: Find projector that maximizes the ratio of the "between scatter" measure over "within scatter" measure
19-1
> Consider 2nd moments for a vector a :

$$
\begin{aligned}
a^{T} S_{B} a & =\sum_{i=1}^{c} n_{k}\left|a^{T}\left(\mu^{(k)}-\mu\right)\right|^{2}, \\
a^{T} S_{W} a & =\sum_{k=1}^{c} \sum_{x_{i} \in X_{k}}\left|a^{T}\left(x_{i}-\mu^{(k)}\right)\right|^{2}
\end{aligned}
$$

$>a^{T} S_{B} a \equiv$ weighted variance of projected μ_{j} 's
$>a^{T} S_{W} a \equiv \mathrm{w}$. sum of variances of projected classes X_{j} 's
> LDA projects the data so as to maximize the ratio of these two numbers:

$$
\max _{a} \frac{a^{T} S_{B} a}{a^{T} S_{W} a}
$$

- Optimal $a=$ eigenvector asso-
ciated with top eigenvalue of:

$$
S_{B} u_{i}=\lambda_{i} S_{W} u_{i} .
$$

LDA - Extension to arbitrary dimensions

> Criterion: maximize the ratio of two traces:
$\frac{\operatorname{Tr}\left[U^{T} S_{B} U\right]}{\operatorname{Tr}\left[U^{T} S_{W} U\right]}$
> Constraint: $U^{T} U=I$ (orthogonal projector).
> Reduced dimension data: $\boldsymbol{Y}=\boldsymbol{U}^{T} \boldsymbol{X}$.
Common viewpoint: hard to maximize, therefore ...
> ... alternative: Solve instead the ('easier') problem:

```
max }\operatorname{Tr}[\mp@subsup{U}{}{T}\mp@subsup{S}{B}{}U
```

$>$ Solution: largest eigenvectors of $S_{B} u_{i}=\lambda_{i} S_{W} u_{i}$.
19-21
> The margin is the maximum distance between two such planes: goal find w, b to maximize margin.
> Maximize margin subject to the constraint $y_{i}\left(w^{T} x_{i}+b\right) \geq 1$.
$>$ As it turns out the margin is equal to: $\gamma=\frac{2}{\|w\|_{2}}$Prove it.

In Brief: Support Vector Machines (SVM)

> Similar in spirit to LDA. Formally, SVM finds a hyperplane that best separates two training sets belonging to two classes.
$>$ If the hyperplane is: $\quad \boldsymbol{w}^{T} \boldsymbol{x}+\boldsymbol{b}=0$
$>$ Then the classifier is $f(x)=\operatorname{sign}\left(w^{T} x+b\right)$: assigns $y=+1$ to one class and $y=-1$ to other
$>$ Normalize parameters w, b by looking for hyperplanes of the form $w^{T} x+$ $b \geq 1$ to include one set and $w^{T} x+b \leq-1$ to include the other.
$>$ With $y_{i}=+1$ for one class and $y_{i}=-1$ for the other, we can write the constraints as $y_{i}\left(\boldsymbol{w}^{T} x_{i}+b\right) \geq 1$.

19-22

- fisher
$>$ Need to solve the constrained quadratic programming problem:

$$
\begin{aligned}
\min _{w . b} & \frac{1}{2}\|w\|_{2}^{2} \\
\text { s.t. } & y_{i}\left(\boldsymbol{w}^{T} x_{i}+b\right) \geq 1, \quad \forall x_{i}
\end{aligned}
$$

Modification 1: Soft margin. Consider hinge loss: $\max \left\{0,1-y_{i}\left[\boldsymbol{w}^{T} x_{i}+b\right]\right\}$
$>$ Zero if constraint satisfied for pair x_{i}, y_{i}. Otherwise proportional to distance from corresponding hyperplane. Hence we can minimize

$$
\lambda\|w\|^{2}+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left[\boldsymbol{w}^{T} x_{i}+b\right]\right\}
$$

Q2 Suppose $y_{i}=+1$ and let $d_{i}=1-y_{i}\left[\boldsymbol{w}^{T} x_{i}+b\right]$. Show that the distance between x_{i} and hyperplane $w^{T} x_{i}+b=+1$ is $d_{i} /\|w\|$.

Modification 2 : Use in combination with a Kernel to improve separability
\qquad

A few words on Deep Neural Networks (DNNs)

$>$ Ideas of neural networks goes back to the 1960s - were popularized in early 1990s - then laid dormant until recently.
> Two reasons for the come-back:

- DNN are remarkably effective in some applications
- big progress made in hardware [\rightarrow affordable 'training cost']

$$
\begin{aligned}
& \text { Input: } x, \text { Output: } y \\
& \text { Set: } z_{0}=x \\
& \text { For } l=1: \mathrm{L}+1 \text { Do: } \\
& \quad z_{l}=\sigma\left(W_{l}^{T} z_{l-1}+b_{l}\right) \\
& \text { End } \\
& \text { Set: } y=\phi(x):=z_{L+1}
\end{aligned}
$$

- layer \# 0 = input layer
- layer \# $(L+1)=$ output layer

$>$ Training a neural network can be viewed as a problem of approximating a function ϕ which is defined via sets of parameters:

Problem: find sets of parameters such that $\phi(x) \approx y$

DNN (continued)

$>$ Problem is not convex, highly parameterized, ...,
> .. Main method used: Stochastic gradient descent [basic]
> It all looks like alchemy... but it works well for certain applications
> Training is still quite expensive - GPUs can help
> *Very* active area of research
$>$ A matrix \boldsymbol{W}_{l} is associated with layers $1,2, L+1$.
> Problem:
Find ϕ (i.e., matrices W_{l}) s.t. $\phi(x) \approx y$

