DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

Goal: to show how partial differential lead to sparse linear systems

« See Chap. 2 of text

* Finite difference methods

 Finite elements

» Assembled and unassembled finite element matrices



Why study discretized PDEs?

» One of the most important sources of sparse linear systems

»  Will help understand the structures of the problem and their connections
with “meshes” in 2-D or 3-D space

» Also: iterative methods are often formulated for the PDE directly — instead
of a discretized (sparse) system.

NOTE: Useful to have an idea of how Finite Difference matrices are generated.
For Finite Elements: goal is to unravel the related sparse computations to which
they lead.




A typical numerical simulation

Physical Problem —
Nonlinear PDEs —
Discretization —
Linearization (Newton) —

Sequence of Sparse Linear Systems Ax = b




Example: discretized Poisson equation

O u + Ou _ f,for e=("") inQ
> .Common. Partial Differ- g2 T g2 = ™ = {4,
ential Equation (PDE) : where Q@ = bounded, open domain inR?

I
» + boundary conditions:

X2 = Dirichlet: u(z) = ¢(x)
Neumann: Ju(z) =0
Cauchy: &%+ a(z)u = v




A = 6 2 + = Is the Laplace operator or Laplacean
How to approximate the Poisson problem shown above?
Answer: discretize, i.e., replace continuum with discrete set.

Then approximate Laplacean using this discretization

Y Y Y VY'Y

Many types of discretizations.. will briefly cover Finite Differences (FD)
and Finite Elements (FEM)

Finite Differences: Basic approximations |

» Formulas derived from Taylor series expansion:

(z + h) ( )+hdu+h2d2u+h3d3 ht d*u
u(x — u(x
dx 2 dax? 6da33 24 dz?

—— (&)




Discretization of PDEs - Basic approximations

» Simplest scheme: forward difference

du u(x+h)—u(x) hd?u(x) )
dw h T2 e TOUD)
u(x + h) — u(x)
h

» Centered differences for second derivative:
d*u(x) u(x + h) — 2u(x) + u(x — h) h?>d*u(f)
dz? h2 T 12 dat
where £ < ¢ < ¢,

S
~S




Notation: 6T u(x) = u(z + h) — u(x)
0 u(x) = u(x) — u(x — h)

Operations d[ d] are common [in-homogeneous
of the type: dx

U®) 3 media].

» The following is a second order approximation:

i [a(a}) d—u]

1
o (ai_% 5—u) + O(h?)
a; 1(wipn — ) — a;_1(u; — ui1)

h2

dx dx

Q

7] Show that 6+ (az._l 5—u) — 5 (aH; 5+u)

2 2




Finite Differences for 2-D Problems

Consider the simple problem,

(82u 82u> ,
— + = f InQ

ox? Oz
u=0 onrl

Q = rectangle (0,1;) x (0,12) and T" its boundary.

Discretize uniformly :

ri1;, = tXh 1=0,...,n1+1 h;=

thz j:O,...,n2+1 h2:
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Finite Difference Scheme for the Laplacean

» Use centered differences for -2, and -Z, - with mesh sizes hy = hy = h :
1

2
3:132

1
Au(x) = 2 lu(x1 + hyx2) + u(x; — h,x2)+
+u(xy, 2 + h) + u(xy, 22 — h) — du(xy, T2)]

(1)

The 5-point ‘stencil:’

Ll (D (—
(1)




The resulting matrix
has the following block
structure:

With
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1
A=—|-1

h2

—1
B
—1

—1
B

h,

Case: 7x5 grid
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Finite Element Method (FEM): a quick overview

I’
Background: Green’s formula X,
ou n
/Vv.Vu dx = —/vA’u, da:—l—/fv—_, ds.
Q Q r On
X,

» The dot indicates a dot product of two vectors.

Au
» V = gradient operator. In 2-D: Vu = (%"”l) ]

8%2

» Awu = Laplacean of u

» 11 1S the unit vector that is normal to T" and directed outwards.




u(x + hv) — u(x)
h

L ou .
» Frechet derivative: ?(w) = lim
v h—0

» Green’s formula generalizes the usual formula for integration by parts

ou Ov ou Ov
a(u,v) = /Vu.Vvdwzf + dx
Q Q 8(131 8331 8:62 BCIBQ

(f,v) = /Qf'vd:c.

» Define

» With Dirichlet BC, the integral on the boundary in Green’s formula van-
iIshes —

a(u,v) = —(Au,v).




» Suppose we want to solve —Aw = f in Q + Dirichlet BC

» Weak formulation of the original problem: select a subspace of reference
V of L? and then solve

Find « € V such that a(’:,Z’U)) =(f,v), VveV

» Finite Element method solves this weak problem...

» ... by discretization




» The original domain is approximated by the union @, of m triangles K;,
Triangulation of Q :

Qh = 0 Kz
1=1

» Some restrictions on angles, edges, etc..

Vi={¢| ¢, € C°% oér, =0, ¢k, linear Vv j}

» (O = set of continuous functions
» ¢ x == restriction of ¢ to the subset X

» Letx;,j =1,...,n, be the nodes of the triangulation




» (Can define a (unique) 'hat’ function ¢, in V;, associated with each z; s.t.:

J

1 If Ly = Ly

1 \
! \
! \
1 \
1 \
! \
1 \
. ° ! \
0 if + ' ‘
z J -

» Each function u of V}, can be expressed as

bj(xi) = dij = {

w@) = &ei(@). (%)




» FEM approximation = Galerkin condition for functions in Vj:

Find v € V}, such that a(u,v) = (f,v), V v €V,

» Express u in the basis {¢;} (see *), then substitute above. Result:

> Linearsystem \"q ¢ =pg; Wwhere: oy = a(¢;, éi), Bi = (f,¢i).
j=1

The above equations form a linear system of equations Az = b

» A is Symmetric Positive Definite

#2| Prove it




The Assembly Process: Illustration

\ 1
1 \ 1 \
! \ 1 \
1 \ ! \
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! \ / \
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If triangle K ¢ support domains of
both ¢; and ¢; then ax (i, ¢;) =0
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If triangle K € *both* nonzero
domains of ¢; and ¢; then

aK(qbia qu) 75 0

> S0: ax(di, ¢;) #0iffi € {k,l,m}and j € {k,I,m}.
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The Assembly Process

Small finite element mesh and pattern of the corresponding assembled matrix
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Al A4lm

Al

Al

E B B E N
[ | | E B B
E N | | E B BN
Element matrices Al¢l, e = 1,...,4 for FEM mesh shown above

» Each element contributes a 3 x 3 submatrix Alel (spread out)

» (Can also use the matrix in
un-assembled form - To multi-
ply a vector by A for example
we can do:

2-19

nel

nel

y=Ax = Z Aldly = Z P. Ak, (Prz)
e=1 e=1

Chap 2 — discr




» (Can be computed using the element matrices Ak, - no need to assemble

» The product P'x gathers x data associated with the e-element into a
3-vector consistent with the ordering of the matrix Ag,.

» Advantage: some simplification in process

» Disadvantage: cost (memory + computations).




Resources: A few matlab scripts

» These (and others) will be posted in the matlab folder of class web-site

>> help fd3d
function A = fd3d(nx,ny,nz,alpx,alpy,alpz,dshift)
NOTE nx and ny must be > 1 —— nz can be == 1.

5- or 7-point block-Diffusion/conv. matrix. with

» A stripped-down version is |1ap2D (nx, ny)

>> help mark
[A] = mark (m)
generates a Markov chain matrix for a random walk

on a triangular grid. A is sparse of size n=m#* (m+1l)/2
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#3| Explore A few useful matlab functions

*kron
* gplot for ploting graphs

* reshape for going from say 1-D to 2-D or 3-D arrays

#4| Write a script to generate a 9-point
discretization of the Laplacean. = (1)




