
DOMAIN DECOMPOSITION-TYPE METHODS

• Back to scientific computing. Introduction – motivation

• Domain partitioning and distributed sparse matrices

• Basic algorithms: distributed Matvec

• Distributed preconditoners: additive Schwarz, multiplicatieve Schwarz.

• Schur complement techniques



Introduction

ä Back to scientific computing. So solve: PDE or Ax = b

ä Thrust of parallel computing techniques in most applications areas.

ä Programming model: Message-passing seems (MPI) dominates

ä Open MP for small number of processors

ä Also: GPUs (CUDA, ...) in most High-performance computers

ä Parallel programming has penetrated most ‘applications’ areas [Sciences
and Engineering, Data science, industry, ...]

20-2 – introParallel



Domain Decomposition: A Model problem

Problem:{
∆u = f in Ω

u = uΓ on Γ = ∂Ω.

Domain:

Ω =

s⋃
i=1

Ωi,

ä Domain decomposition or substructuring methods attempt to solve a
PDE problem (e.g.) on the entire domain from problem solutions on the
subdomains Ωi.

20-3 Text: 14 – DD



Discretization of domain



Coefficient Matrix

20-5 Text: 14 – DD



Types of mappings

(a) Vertex-based; (b) edge-based; and (c) element-based partitioning

ä Can adapt PDE viewpoint to general sparse matrices

ä Will use the graph representation and ’vertex-based’ viewpoint –

20-6 Text: 14 – DD



Generalization: Distributed Sparse Systems

ä Simple illustration:
Block assignment. Assign
equation i and unknown i

to a given ’process’
ä Naive partitioning -
won’t work well in practice

20-7 Text: 14 – DD1



ä Best idea is to use the adjacency graph of A:

Vertices = {1, 2, · · · , n};
Edges: i→ j iff aij 6= 0

1 2

34

1

3

2

4

Graph partitioning problem:

• Want a partition of the vertices of the graph so that

(1) partitions have ∼ the same sizes

(2) interfaces are small in size

ä Standard dual objective: “minimize” communication + “balance” partition
sizes

20-8 Text: 14 – DD1



General Partitioning of a sparse linear system

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

S1 = {1, 2, 6, 7, 11, 12}: This means
equations and unknowns 1, 2, 3, 6, 7,
11, 12 are assigned to Domain 1.
S2 = {3, 4, 5, 8, 9, 10, 13}
S3 = {16, 17, 18, 21, 22, 23}
S4 = {14, 15, 19, 20, 24, 25}

20-9 Text: 14 – DD1



Alternative: Map elements / edges rather than vertices

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

Equations/unknowns 3, 8, 13
shared by 2 domains. From dis-
tributed sparse matrix viewpoint
this is an overlap of one layer

ä Partitioners : Metis, Chaco, Scotch, Zoltan, H-Metis, PaToH, ..

20-10 Text: 14 – DD1



20-11 Text: 14 – DD1



A few words about hypergraphs

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes when parti-
tioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

ä Example: completely nonsymmetric patterns ...

ä .. Even rectangular matrices

20-12 Text: 14 – DD1



Example: V = {1, . . . , 9} and E = {a, . . . , e} with
a = {1, 2, 3, 4}, b = {3, 5, 6, 7}, c = {4, 7, 8, 9},
d = {6, 7, 8}, and e = {2, 9}

6 6

l

6 6

l

l
l

6

66

66

l

1

2

3

4

5

67

8
9

a b

c
d

e

net  e 

net  d

Boolean matrix:
1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e

20-13 Text: 14 – DD1



Distributed Sparse matrices (continued)

ä Once a good partitioning is found, questions are:

1. How to represent this partitioning?

2. What is a good data structure for representing distributed sparse
matrices?

3. How to set up the various “local objects” (matrices, vectors, ..)

4. What can be done to prepare for communication that will be required
during execution?

20-14 Text: 14 – DD1



Two views of a distributed sparse matrix

External interface

nodes

Internal

nodes   

Local interface

nodes

XiXi

A
i

ä Local interface variables always ordered last.

ä Need: 1) to set up the various “local objects”. 2) Preprocessing to prepare
for communications needed during iteration?

20-15 Text: 14 – DD1



Local view of distributed matrix:

local 

Data 
External data External data 

OO A i

iX Xi

The local system:

(
Bi Fi

Ei Ci

)
︸ ︷︷ ︸

Ai

(
ui

yi

)
+

(
0∑

j∈Ni
Eijyj

)
︸ ︷︷ ︸

yext

=

(
fi

gi

)

ä ui : Internal variables; yi : Interface variables

20-16 Text: 14 – DD1



The local matrix:

Local

points

Internal
Points

Interface

A
loc

B
ext

The local matrix consists of 2 parts:
a part (’Aloc’) which acts on local
data and another (’Bext’) which acts
on remote data.

ä Once the partitioning is available these parts must be identified and built
locally..

ä In finite elements, assembly is a local process.

ä How to perform a matrix vector product? [needed by iterative schemes?]

20-17 Text: 14 – DD1



Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xbound to neighbors - Gather xext from neighbors

2. Local matrix – vector product

y = Alocxloc

3. External matrix – vector product

y = y +Bextxext

NOTE: 1 and 2 are independent and can be overlapped.
20-18 Text: 14 – DD1



Distributed Sparse Matrix-Vector Product

Main part of the code:

call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
c
c do local matrix-vector product for local points
c

call amux(nloc,x,y,aloc,jaloc,ialoc)
c
c receive the boundary information
c

call MSG_bdx_receive(nloc,x,y,nproc,proc,ix,ipr,
* ptrn,ierr)

c
c do local matrix-vector product for external points
c

nrow = nloc - nbnd + 1
call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

c
return

20-19 Text: 14 – DD1



The local exchange information

ä List of adjacent processors (or subdomains)

ä For each of these processors, lists of boundary nodes to be sent / received
to /from adj. PE’s.

ä The receiving processor must have a matrix ordered consistently with the
order in which data is received.

Requirements

ä The ‘set-up’ routines should handle overlapping

ä Should use minimal storage (only arrays of size nloc allowed).

20-20 Text: 14 – DD1



Distributed Flexible GMRES (FGMRES)
1. Start: Choose x0 and m. Let of the Krylov subspaces. Define H̄m ∈

R(m+1)×m with H̄m ≡ 0. and initialize all its entries hi,j to zero.

2. Arnoldi process:

(a) Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
(b) For j = 1, ...,m do

• Compute zj := M−1
j vj ;Compute w := Azj ;

• For i = 1, . . . , j, do 1. hi,j := (w, vi) 2. w := w − hi,jvi{
hi,j := (w, vi)

w := w − hi,jvi
• Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j.

(c) Define Zm := [z1, ...., zm]

3. Form the approximate solution: Compute



ym = argminy‖βe1 − H̄my‖2 and xm = x0 + [z1, z2, ..., zm]ym and e1 =

[1, 0, . . . , 0]T . with H̄m = {hi,j}1≤i≤j+1;1≤j≤m.

4. Restart: If satisfied stop, else set x0 ← xm and goto 1.

20-22 Text: 14 – DD1



Main Operations in (F) GMRES :

1. Saxpy’s – local operation – no communication

2. Dot products – global operation

3. Matrix-vector products – local operation – local communication

4. Preconditioning operations – locality varies.

20-23 Text: 14 – DD1



Distributed Dot Product

/*-------------------- call blas1 function */

tloc = DDOT(n, x, incx, y, incy);

/*-------------------- call global reduction */

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);

20-24 Text: 14 – DD1



A remark: the global viewpoint


B1 F1

B2 F2

. . . .
. . . .

Bp Fp

E1 C1 E12 · · · E1p

E2 E21 C2 · · · E2p

. . . ... ... ...
Ep Ep1 Ep2 · · · Cp





u1

u2

...

...
up

y1

y2

...
yp


=



f1

f2

...

...
fp

g1

g2

...
gp


← Interior

variables
→← Interface

variables
→

20-25 Text: 14 – DD1



Example: Distributed ILU(0)

ä Global view of matrix is (for 4 processors):
ä Ai = local matrix restricted to internal
nodes only

A =


A1 F1

A2 F2

A3 F3

A4 F4

E1 E2 E3 E4 D


ä 1-st approach: Idea: ILU on this matrix – parallelism available for diagonal
blocks. Define an order in which to eliminate interface unknowns.

ä 2-nd approach: Multi-color, k-step SOR or SSOR preconditioners.

ä 3-rd approach: Solve equations for all interface points [Schur Comple-
ment approach] – to precondition, use ideas from DD.

20-26 – distprecon



Example: Distributed ILU(0) – cont.

ä Easy to understand from a local view of distributed matrix

ä Start by selecting an order [or a “schedule”, or a “priority rule”] in which to
process globally

ä Then locally:

1. Eliminate internal rows
2. Receive rows needed to process local interface rows
3. Process local interface rows
4. Send local interface rows to processors needing them

20-27 – distprecon



A distributed view of ILU(0) – schedule based on PE numbers

Internal interface points 

External interface points 

Proc. 2 
Proc. 4

Proc.  6

Proc. 14 

Proc.  13 

Proc. 10 

Note: any schedule can be used provided neighbors have different labels.
Example: can use coloring.



A distributed view of ILU(0) – schedule based on PE coloring

color 2

color 3

color 4

color 1

color 1

color 3

Internal interface points 

External interface points 

ä Generalized ILU(k): D. Hysom and A. Pothen ’00.

20-29 – distprecon



Domain Decomposition–Type preconditoners

• Schwarz Preconditioners

• Schur-complement based Preconditioners

• Multi-level ILU-type Preconditioners

ä Observation: Often, in practical applications, Schwarz Preconditioners are
used : SUB-OPTIMAL

20-30 Text: 14 – DD2



Domain-Decomposition Preconditioners (cont.)

Local view of distributed matrix:

local 

Data 
External data External data 

OO A i

iX Xi

Block Jacobi Iteration (Additive Schwarz):
1. Obtain external data yi
2. Compute (update) local residual

ri = (b−Ax)i = bi −Aixi −Biyi

3. Solve Aiδi = ri

4. Update solution xi = xi + δi

20-31 Text: 14 – DD2



ä Multiplicative Schwarz. Need a coloring of the subdomains so that:

ä No two adjacent subdomains share same color

1

2

1

2

12

1
2



Multicolor Block SOR Iteration (Multiplicative Schwarz):
1. Do col = 1, . . . , numcols

2. If (col.eq.mycol) Then
3. Obtain external data yi
4. Update local residual ri = (b−Ax)i

5. Solve Aiδi = ri

6. Update solution xi = xi + δi

7. EndIf
8. EndDo

20-33 Text: 14 – DD2



Breaking the sequential color loop

ä “Color” loop is sequential. Can be broken in several different ways.

(1) Have a few subdomains per processors

1 12 2 2

4
4

4

3
3

1
1

1

1
1

1
1

2
2

2

2
3

3 3

3
4

4
4

4

3
3

32

44
4

2

2
2

1

3

1

4
3

20-34 Text: 14 – DD2



(2) Separate interior nodes from interface nodes (2-level blocking)

Color  # 1 

Interior nodes

Color 2

Color 3

Color 3

Color 2

(3) Use a block-GMRES algorithm - with Block-size = number of colors. SOR
step targets a different color on each column of the block ä no iddle time.

20-35 Text: 14 – DD2



Local Solves

ä Each local system Aiδi = ri can be solved in three ways:

1. By a (sparse) direct solver

2. Using a standard preconditioned Krylov solver

3. Doing a backward-forward solution associated with an accurate ILU (e.g.
ILUT) precondioner

ä We only use (2) with a small number of inner steps (up to 10) or (3).

20-36 Text: 14 – DD2



SCHUR COMPLEMENT-BASED PRECONDITIONERS



Schur complement system

Local system can be written as

Aixi +Xiyi,ext = bi. (1)

local 

Data 
External data External data 

OO A i

iX Xi

xi= vector of local unknowns, yi,ext = external interface variables, and bi =
local part of RHS.

20-38 Text: 14 – DD3



ä Local equations(
Bi Fi

Ei Ci

)(
ui

yi

)
+

(
0∑

j∈Ni
Eijyj

)
=

(
fi

gi

)
(2)

ä eliminate ui from the above system:

Siyi +
∑
j∈Ni

Eijyj = gi − EiB−1
i fi ≡ g′i,

where Si is the “local” Schur complement

Si = Ci − EiB−1
i Fi. (3)

20-39 Text: 14 – DD3



Structure of Schur complement system

Global Schur complement system: Sy = g′ with :

S =


S1 E12 . . . E1p

E21 S2 . . . E2p

... . . . ...
Ep1 Ep−1,2 . . . Sp



y1

y2

...
yp

 =


g′1
g′2
...
g′p

 .
ä Eij’s are sparse = same as in the original matrix

ä Can solve global Schur complement system iteratively. Back-substitute to
recover rest of variables (internal).

ä Can use the procedure as a preconditining to global system.

20-40 Text: 14 – DD3



Simplest idea: Schur Complement Iterations

(
ui

yi

)
Internal variables
Interface variables

ä Do a global primary iteration (e.g., block-Jacobi)

ä Then accelerate only the y variables (with a Krylov method)

Still need to precondition..

20-41 Text: 14 – DD3



Approximate Schur-LU

ä Two-level method based on induced preconditioner. Global system can
also be viewed as

(
B F

E C

)(
u

y

)
=

(
f

g

)
, B =


B1 F1

B2 F2

. . . ...
Bp Fp

E1 E2 · · · Ep C


Block LU factorization of A:(

B F

E C

)
=

(
B 0

E S

) (
I B−1F

0 I

)
,

20-42 Text: 14 – DD3



Preconditioning: L =

(
B 0

E MS

)
and U =

(
I B−1F

0 I

)
with MS = some approximation to S.

ä Preconditioning to global system can be induced from any preconditioning
on Schur complement.

Rewrite local Schur system as

yi + S−1
i

∑
j∈Ni

Eijyj = S−1
i

[
gi − EiB−1

i fi
]
.

ä equivalent to Block-Jacobi preconditioner for Schur complement.

ä Solve with, e.g., a few s (e.g., 5) of GMRES

20-43 Text: 14 – DD3



ä Question: How to solve with Si?

ä Can use LU factorization of local matrix Ai =

(
Bi Fi

Ei Ci

)
and exploit the relation:

Ai =

(
LBi 0

EiU
−1
Bi

LSi

)(
UBi L

−1
Bi
Fi

0 USi

)
→ LSiUSi = Si

ä Need only the (I) LU factorization of the Ai [rest is already available]

ä Very easy implementation of (parallel) Schur complement techniques for
vertex-based partitioned systems : YS-Sosonkina ’97; YS-Sosonkina-Zhang
’99.

20-44 Text: 14 – DD3


