DOMAIN DECOMPOSITION-TYPE METHODS

- Back to scientific computing. Introduction - motivation
- Domain partitioning and distributed sparse matrices
- Basic algorithms: distributed Matvec
- Distributed preconditoners: additive Schwarz, multiplicatieve Schwarz.
- Schur complement techniques

Domain Decomposition: A Model problem

Problem:

$$
\left\{\begin{array}{rc}
\Delta u & =f \text { in } \Omega \\
u & =u_{\Gamma} \text { on } \Gamma=\partial \Omega .
\end{array}\right.
$$

Domain:

$$
\Omega=\bigcup_{i=1}^{s} \Omega_{i},
$$

> Domain decomposition or substructuring methods attempt to solve a PDE problem (e.g.) on the entire domain from problem solutions on the subdomains Ω_{i}.

Introduction

> Back to scientific computing. So solve: PDE or $A x=b$
> Thrust of parallel computing techniques in most applications areas.
> Programming model: Message-passing seems (MPI) dominates
> Open MP for small number of processors
> Also: GPUs (CUDA, ...) in most High-performance computers
> Parallel programming has penetrated most 'applications' areas [Sciences and Engineering, Data science, industry, ...]
$\xrightarrow{20-2}$ - introParallel

Discretization of domain

Coefficient Matrix

Types of mappings

(a) Vertex-based;

(b) edge-based; and

(c) element-based partitioning
> Can adapt PDE viewpoint to general sparse matrices
> Will use the graph representation and 'vertex-based' viewpoint -

20-6
Best idea is to use the adjacency graph of A
Vertices $=\{1,2, \cdots, n\}$;
Edges: $i \rightarrow j$ iff $a_{i j} \neq 0$

Graph partitioning problem:

- Want a partition of the vertices of the graph so that
(1) partitions have \sim the same sizes
(2) interfaces are small in size
> Standard dual objective: "minimize" communication + "balance" partition sizes

$S_{1}=\{1,2,6,7,11,12\}$: This means equations and unknowns $1,2,3,6,7$, 11, 12 are assigned to Domain 1.
$S_{2}=\{3,4,5,8,9,10,13\}$
$S_{3}=\{16,17,18,21,22,23\}$
$S_{4}=\{14,15,19,20,24,25\}$

Alternative: Map elements / edges rather than vertices

Equations/unknowns 3, 8, 13 shared by 2 domains. From distributed sparse matrix viewpoint this is an overlap of one layer
> Partitioners : Metis, Chaco, Scotch, Zoltan, H-Metis, PaToH, .. 20-10 Text: 14 - DD1

A few words about hypergraphs
> Hypergraphs are very general.. Ideas borrowed from VLSI work
> Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
> Hypergraphs can better express complex graph partitioning problems and provide better solutions.
> Example: completely nonsymmetric patterns ...
> .. Even rectangular matrices

Example: $V=\{1, \ldots, 9\}$ and $E=\{a, \ldots, e\}$ with
$a=\{1,2,3,4\}, b=\{3,5,6,7\}, c=\{4,7,8,9\}$,
$d=\{6,7,8\}, \quad$ and $e=\{2,9\}$

Distributed Sparse matrices (continued)

Once a good partitioning is found, questions are:

1. How to represent this partitioning?
2. What is a good data structure for representing distributed sparse matrices?
3. How to set up the various "local objects" (matrices, vectors, ..)
4. What can be done to prepare for communication that will be required during execution?

20-14 Text: 14 - DD 1

Two views of a distributed sparse matrix

> Local interface variables always ordered last.
> Need: 1) to set up the various "local objects". 2) Preprocessing to prepare for communications needed during iteration?

Local view of distributed matrix:

The local system:

$$
\underbrace{\left(\begin{array}{ll}
B_{i} & F_{i} \\
E_{i} & C_{i}
\end{array}\right)}_{A_{i}}\binom{u_{i}}{y_{i}}+\underbrace{\binom{0}{\sum_{j \in N_{i}} E_{i j} y_{j}}}_{y_{e x t}}=\binom{f_{i}}{g_{i}}
$$

u_{i} : Internal variables; y_{i} : Interface variables

```
The local matrix:
\begin{tabular}{l|l|l|l|}
\hline \begin{tabular}{l} 
Internal \\
Points
\end{tabular} & & & \\
& \(\mathbf{A}_{\mathbf{l o c}}\) & \\
\begin{tabular}{l} 
Local \\
Interface \\
points
\end{tabular} & & & \\
\cline { 2 - 3 }
\end{tabular}
\(>\) Once the partitioning is available these parts must be identified and built locally..
\(>\) In finite elements, assembly is a local process.
> How to perform a matrix vector product? [needed by iterative schemes?]
```

```
20-17
```

20-17
Text: 14 - DD
Text: 14 - DD
Distributed Sparse Matrix-Vector Product
Distributed Sparse Matrix-Vector Product
Main part of the code:
Main part of the code:
call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
c do local matrix-vector product for local points
c do local matrix-vector product for local points
call amux(nloc,x,y,aloc,jaloc,ialoc)
call amux(nloc,x,y,aloc,jaloc,ialoc)
C receive the boundary information
C receive the boundary information
C
C
call MSG_bodx_receive(nloc,x,y,nproc,proc,ix,ipr,
call MSG_bodx_receive(nloc,x,y,nproc,proc,ix,ipr,

* ptrn,ierr)
* ptrn,ierr)
C do local matrix-vector product for external points
C do local matrix-vector product for external points
c nrow = nloc - nbnd + 1
c nrow = nloc - nbnd + 1
call amux1(nrow, x,y(nibnd), aloc, jaloc, ialoc(nloc+1))
call amux1(nrow, x,y(nibnd), aloc, jaloc, ialoc(nloc+1))
C
C
return

```
    return
```


Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter $x_{\text {bound }}$ to neighbors - Gather $x_{e x t}$ from neighbors

2. Local matrix - vector product

$$
y=A_{l o c} x_{l o c}
$$

3. External matrix - vector product

$$
y=y+B_{e x t} x_{e x t}
$$

NOTE: 1 and 2 are independent and can be overlapped.
20-18 \qquad
The local exchange information
> List of adjacent processors (or subdomains)
> For each of these processors, lists of boundary nodes to be sent / received to /from adj. PE's.
> The receiving processor must have a matrix ordered consistently with the order in which data is received.

Requirements

> The 'set-up' routines should handle overlapping
> Should use minimal storage (only arrays of size nloc allowed).

Distributed Flexible GMRES (FGMRES)

1. Start: Choose x_{0} and m. Let of the Krylov subspaces. Define $\overline{\boldsymbol{H}}_{m} \in$ $\mathbb{R}^{(m+1) \times m}$ with $\overline{\boldsymbol{H}}_{m} \equiv 0$. and initialize all its entries $h_{i, j}$ to zero.

2. Arnoldi process:

(a) Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$.
(b) For $j=1, \ldots, m$ do

- Compute $z_{j}:=M_{j}^{-1} v_{j}$; Compute $w:=A z_{j}$;
- For $i=1, \ldots, j$, do 1. $h_{i, j}:=\left(w, v_{i}\right) \quad$ 2. $w:=w-h_{i, j} v_{i}$ $\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right.$
- Compute $h_{j+1, j}=\|w\|_{2}$ and $v_{j+1}=w / h_{j+1, j}$.
(c) Define $Z_{m}:=\left[z_{1}, \ldots, z_{m}\right]$

3. Form the approximate solution: Compute

Main Operations in (F) GMRES :

1. Saxpy's - local operation - no communication
2. Dot products - global operation
3. Matrix-vector products - local operation - local communication
4. Preconditioning operations - locality varies.
$y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} y\right\|_{2}$ and $x_{m}=x_{0}+\left[z_{1}, z_{2}, \ldots, z_{m}\right] y_{m}$ and $e_{1}=$ $[1,0, \ldots, 0]^{T}$. with $\overline{\boldsymbol{H}}_{m}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1 ; 1 \leq j \leq m}$.
5. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 1 .
$\xrightarrow{20-22}$
Text: 14 - DD 1
```
/*-------------------- call blas1 function */
    tloc = DDOT(n, x, incx, y, incy);
/*-------------------- call global reduction */
    MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM, comm);
```


Example: Distributed ILU(0)

$\leftarrow \begin{aligned} & \text { Interior } \\ & \text { variables }\end{aligned} \rightarrow \leftarrow \begin{aligned} & \text { Interface } \\ & \text { variables }\end{aligned} \rightarrow$
\qquad ment approach] - to precondition, use ideas from DD.

20-25
Text: 14 - DD 1

Example: Distributed ILU(0) - cont.
> Easy to understand from a local view of distributed matrix
> Start by selecting an order [or a "schedule", or a "priority rule"] in which to process globally
> Then locally:

1. Eliminate internal rows
2. Receive rows needed to process local interface rows
3. Process local interface rows
4. Send local interface rows to processors needing them
$\begin{array}{llll}>\text { Global view of matrix is (for } 4 \text { processors): } \\ \quad \boldsymbol{A}_{i}=\text { local matrix restricted to internal } \\ \text { nodes only }\end{array} \quad \boldsymbol{A}=\left(\begin{array}{llll|l|l}\boldsymbol{A}_{1} & & & & \boldsymbol{F}_{1} \\ & \boldsymbol{A}_{2} & & & \boldsymbol{F}_{2} \\ & & \boldsymbol{F}_{3} & & \boldsymbol{F}_{3} \\ & & & \boldsymbol{A}_{4} & \boldsymbol{F}_{4} \\ \hline & & \\ \hline \boldsymbol{E}_{1} & \boldsymbol{E}_{2} & \boldsymbol{E}_{3} & \boldsymbol{E}_{4} & \boldsymbol{D}\end{array}\right)$
> 1-st approach: Idea: ILU on this matrix - parallelism available for diagonal blocks. Define an order in which to eliminate interface unknowns.
$>$ 2-nd approach: Multi-color, \boldsymbol{k}-step SOR or SSOR preconditioners.
> 3-rd approach: Solve equations for all interface points [Schur Comple-

20-26 - distprecon

A distributed view of $\operatorname{ILU}(0)$ - schedule based on PE numbers

Note: any schedule can be used provided neighbors have different labels. Example: can use coloring.


```
Multicolor Block SOR Iteration (Multiplicative Schwarz):
    . Do col = 1, .., numcols
    2. If (col.eq.mycol) Then
    3. Obtain external data }\mp@subsup{y}{i}{
    4. Update local residual ri
    5. Solve }\mp@subsup{A}{i}{}\mp@subsup{\delta}{i}{}=\mp@subsup{r}{i}{
    6. Update solution }\mp@subsup{x}{i}{}=\mp@subsup{x}{i}{}+\mp@subsup{\delta}{i}{
    7. Endlf
    8. EndDo
```

(2) Separate interior nodes from interface nodes (2-level blocking)

(3) Use a block-GMRES algorithm - with Block-size = number of colors. SOR step targets a different color on each column of the block $>$ no iddle time.

Breaking the sequential color loop

> "Color" loop is sequential. Can be broken in several different ways.
(1) Have a few subdomains per processors

20-34
Local Solves
$>$ Each local system $A_{i} \delta_{i}=r_{i}$ can be solved in three ways:

1. By a (sparse) direct solver
2. Using a standard preconditioned Krylov solver
3. Doing a backward-forward solution associated with an accurate ILU (e.g. ILUT) precondioner
> We only use (2) with a small number of inner steps (up to 10) or (3).

Schur complement system

Local system can be written as

$\boldsymbol{x}_{i}=$ vector of local unknowns, $\boldsymbol{y}_{i, e x t}=$ external interface variables, and $b_{i}=$ local part of RHS.

20-38
Structure of Schur complement system

Global Schur complement system:

$$
S y=g^{\prime} \text { with : }
$$

$$
S=\left(\begin{array}{cccc}
S_{1} & E_{12} & \ldots & E_{1 p} \\
E_{21} & S_{2} & \ldots & E_{2 p} \\
\vdots & & \ddots & \vdots \\
E_{p 1} & E_{p-1,2} & \ldots & S_{p}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{p}
\end{array}\right)=\left(\begin{array}{c}
g_{1}^{\prime} \\
g_{2}^{\prime} \\
\vdots \\
g_{p}^{\prime}
\end{array}\right) .
$$

$>E_{i j}$'s are sparse = same as in the original matrix
> Can solve global Schur complement system iteratively. Back-substitute to recover rest of variables (internal).
> Can use the procedure as a preconditining to global system.

Simplest idea: Schur Complement Iterations

$$
\binom{u_{i}}{y_{i}} \begin{gathered}
\text { Internal variables } \\
\text { Interface variables }
\end{gathered}
$$

> Do a global primary iteration (e.g., block-Jacobi)
> Then accelerate only the y variables (with a Krylov method) Still need to precondition..

with $M_{S}=$ some approximation to S.
$>$ Preconditioning to global system can be induced from any preconditioning on Schur complement.

Rewrite local Schur system as

$$
y_{i}+S_{i}^{-1} \sum_{j \in N_{i}} E_{i j} y_{j}=S_{i}^{-1}\left[g_{i}-E_{i} B_{i}^{-1} f_{i}\right] .
$$

> equivalent to Block-Jacobi preconditioner for Schur complement.
> Solve with, e.g., a few s (e.g., 5) of GMRES

Approximate Schur-LU

> Two-level method based on induced preconditioner. Global system can also be viewed as

$$
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)\binom{u}{y}=\binom{f}{g}, \quad B=\left(\begin{array}{ccccc|c}
B_{1} & & & & \boldsymbol{F}_{1} \\
& B_{2} & & & F_{2} \\
& & \ddots & & \vdots \\
& & & B_{p} & \boldsymbol{F}_{p} \\
\hline E_{1} & E_{2} & \cdots & E_{p} & C
\end{array}\right)
$$

Block LU factorization of \boldsymbol{A} :

$$
\left(\begin{array}{cc}
B & F \\
E & C
\end{array}\right)=\left(\begin{array}{cc}
B & 0 \\
E & S
\end{array}\right)\left(\begin{array}{cc}
I & B^{-1} F \\
0 & I
\end{array}\right),
$$

20-42
Question: How to solve with S_{i} ?
$>$ Can use LU factorization of local matrix $\boldsymbol{A}_{i}=\left(\begin{array}{cc}\boldsymbol{B}_{i} & \boldsymbol{F}_{i} \\ E_{i} & C_{i}\end{array}\right)$ and exploit the relation:

$$
A_{i}=\left(\begin{array}{cc}
L_{B_{i}} & 0 \\
E_{i} U_{B_{i}}^{-1} & L_{S_{i}}
\end{array}\right)\left(\begin{array}{cc}
U_{B_{i}} & L_{B_{B}}^{-1} F_{i} \\
0 & U_{S_{i}}
\end{array}\right) \quad \rightarrow \quad L_{S_{i}} U_{S_{i}}=S_{i}
$$

$>$ Need only the (I) LU factorization of the $\boldsymbol{A}_{\boldsymbol{i}}$ [rest is already available]
> Very easy implementation of (parallel) Schur complement techniques for vertex-based partitioned systems : YS-Sosonkina '97; YS-Sosonkina-Zhang '99.

