BACKGROUND: A Brief Introduction
to Graph Theory

» General definitions; Representations;
» Graph Traversals;
* Topological sort;

Graphs — definitions & representations

» Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V, E) with
E C V x V. So G represents a binary relation. The graph is undirected
if the binary relation is symmetric. It is directed otherwise. V' is the vertex
set and E is the edge set.

If R is a binary relation between elements in V' then, we can represent it by
a graph G = (V, E) as follows:

(u,v) EE+>uRwv

Undirected graph <+ symmetric relation

4-2 — graphBG

Leftt (1R 2); 4R 1); (2R 3);(3 @—>® P—©@
R 2);(3R 4)

Right: (1R 2); (2R 3);(3R 4); (4 J
R 1) @ 3

Given the numbers 5, 3, 9, 15, 16, show the two graphs representing
the relations

R1: Either z < y or y divides .
R2: x and y are congruent modulo 3. [mod(x,3) = mod(y,3)]
» |E| < |V|2 For undirected graphs: |E| < |V|(|]V] + 1)/2.

» A sparse graph is one for which |E| < |V |2

4-3 —graphBG

Graphs — Examples and applications

Airport connection system: (a) R (b) if there is a non-stop flight from (a) to

)-
Highway system;

Computer Networks;

Traffic Flow;

1
(b

2.

3.

4. Electrical circuits;
5.

6. Social Networks;
7.

Sparse matrices;

4-4 — graphBG

Basic Terminology & notation:

» If (u,v) € E, then v is adjacentto u. The edge (u,v) is incident to u
and v.

» |If the graph is directed, then (u,v) is an outgoing edge from » and
incoming edge to v

Representations of Graphs

» A graph is nothing but a collection of vertices (indices from 1 to n), each
with a set of its adjacent vertices [in effect a 'sparse matrix without values’]

» Therefore, can use any of the sparse matrix storage formats - omit the
real values arrays.

» Adj(i) = {j|j adjacentto ¢} Adjacency matrix Assume V =
» The degree of a vertex v is the number of edges incident to ». Can also {1,2,---,n}. Then the adjacency mat!ﬂ;](0 = { Lif (i,5) € B
define the indegree and outdegree. (Sometimes self-edge i — i omitted) of tq = (V, E) is the n x n matrix, wit ’ 0 Otherwise
entries:
> |S| is the cardinality of set S [so |Adj ()| == deg()]
» A subgraph G’ = (V', E’) of G is a graph with V/ C V and E’ C E.
4-5 —graphBG 4-6 — graphBG
Representations of Graphs (cont.) Dynamic representation: Linked lists
P2 B -
_ 1 - 2 ,% ‘H ‘H ‘H H—> Null
1 3|+
1o Ty
1 (§)—-—— 5
6

-

D
®

3

®

4-7 —graphBG

» An array of linked lists. A linked list associated with vertex i, contains all
the vertices adjacent to vertex .

» General and concise for ’sparse graphs’ (the most practical situations) -

but not economical for use in sparse matrix methods
4-8 — graphBG

More terminology & notation

» For agiven Y C X, the section graph of Y is the subgraph Gy =
(Y,E(Y))where E(Y)={(z,y) € Elxt € Y, y inY}

» A section graph is a clique if all the nodes in the subgraph are pairwise
adjacent (— dense block in matrix)

» A path is a sequence of vertices wq, w1, . . . , wy, such that (w;, w; 1) € E
fori =0,...,k — 1.

» The length of the path wg, w1, ..., wy is k (# of edges in the path)
» A cycle is a closed path, i.e., a path with w;, = w,.

» A graph is acyclic if it has no cycles.

4-9 —graphBG

Find cycles in this graph:
@‘

\
(4)

A path in an indirected graph

» A path wy, ..., w; is simple if the vertices wy, . . . , w;, are distinct (except
that we may have w, = wy, for cycles).

» An undirected graph is connected if there is path from every vertex to
every other vertex.

» A digraph with the same property is said to be strongly connected

4-10 — graphBG

» The undirected form of a directed graph the undirected graph obtained by
removing the directions of all the edges.

» Another term used “symmetrized” form -

» A directed graph whose undirected form is connected is said to be weakly
connected or connected.

» Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic
& connected

» Forest = a collection of trees
» In arooted tree one specific vertex is designated as a root.

» Root determines orientation of the tree edges in parent-child relation

4-11 —graphBG

Root 1 5 Root 1 5

» Parent-Child relation: immediate neighbors of root are children. Root is
their parent. Recursively define children-parents

» In example: v3 is parent of vg, vs and vg, vs are chidren of vs.
» Nodes that have no children are leaves. In example: vy, v7, vs, V4

» Descendent, ancestors, ...

4-12 — graphBG

Tree traversals

» Tree traversal is a process of visiting all vertices in a tree. Typically
traversal starts at root.

» Want: systematic traversals of all nodes of tree — moving from a node to
a child or parent

» Preorder traversal: Visit parent before children [recursively]
In example: V1, V24 V9, V104 V34 Ugy Vgy U7,y Ui,y Vg
» Postorder traversal: Visit children before parent [recursively]

In example : v19, vy, V2, Vs, U7, Vg, V3, V4, U5, V1

4-13 — graphBG

Graph Traversals — Depth First Search

» Issue: systematic way of visiting all nodes of a general graph

» Two basic methods: Breadth First Search (wll’s see later) & ...

Algorithm List = DFS(G,v) (DFS from v)
 Visit and Mark v;
» Depth-First Search «for all edges (v, w) do

—if w is not marked then List = DFS(G, w)
— Add v to top of list produced above

» |If G is undirected and connected, all nodes will be visited

» If G is directed and strongly connected, all nodes will be visited
4-14 — graphBG

Depth First Search — undirected graph example

=
>

» Assume adjacent nodes are listed
in alphabetical order.

DFS traversal from A ? D G
E F
4-15 —graphBG

Depth First Search — directed graph example

listed in alphabetical order.

A » Assume adjacent nodes are
/ c DFS traversal from A?

NOTE: We will now use a column-
/ oriented graph representation:

] —1 if aij;éO

m
T

4-16 — graphBG

function [Lst, Mark] = dfs(u, A, Lst, Mark) Depth-First-Search Tree: Consider the parent-child relation: v is a parent of
%% function [Lst, Mark] = dfs(u, A, Lst, Mark) - —
22 dfs from node U -- Recursive u if u was visited from v in the depth first search algorithm. The (directed)
g graph resulting from this binary relation is a tree called the Depth-First-
[1i, 33, rrl = find(A(:,u)); Search Tree. To describe tree: only need the parents list.
Mark (u) = 1;
for k=1l:length (ii
°r v = (ierilg([k) ;(ll) » To traverse all the graph we need a DFS(v,G) from each node v that has
if ("Mark(v)) not been visited yet — so add another loop. Refer to this as
[Lst, Mark] = dfs(v, A, Lst, Mark);

end DFS(G)
end
Lst = , Lst S .

S [u, Lst] » When a new vertex is visited in DFS, some work is done. Example: we
can build a stack of nodes visited to show order (reverse order: easier) in
which the node is visited.

4-17 — graphBG 4-18 — graphBG
EXAMPLE 3 5 W dj list
o o is ?isﬁﬁiriaéiﬁéngidef Back edges, forward edges, and cross edges
| | [e.g: Adj(4):(ll5l6l7)]
| | A
| | 4 6
1/o<————o————7o
/o : / c » Thick red lines: DFS traversal tree from
/ N/ A
// \\:// > A — Fis a Forward edge
2 o 7 o » F — B is aBack edge
Bg}sfe‘rcl}égv?irgﬁ}: 1 - % -——> % > % ——> 2 -——> 2 -——> g G » C — B and G — F are Cross-edges.
3 (|> ? 5
! | 4 6 Ee —— &F
1 o~ o—————- o <————= Depth First
/ / Search Tree
/ /
2 0 7 o
4-19 — graphBG 4-20 — graphBG

> Consider the ‘List’
produced by DFS.

Lst=[A, C, G, B, D, F, E]
» Order in list is important
for some algorithms
» Notice: Label nodes in
List from 1 ton. Then:

e Tree-edges / Forward edges : labels increase in —
e Cross edges : labels in/de-crease in — [depends on labeling]
e Back-edges : labels decrease in —

4-21 — graphBG

Properties of Depth First Search

» If G is a connected undirected (or strongly connected) graph, then each
vertex will be visited once and each edge will be inspected at least once.

» Therefore, for a connected undirected graph, The cost of DFSis O(|V| +
|El)

> If the graph is undirected, then there are no cross-edges. (all non-tree
edges are called ‘back-edges’)

Theorem: A directed graph is acyclic iff a DFS search of G yields no back-
edges.

» Terminology: Directed Acyclic Graph or DAG

4-22 — graphBG

Topological Sort

Problem: Given a Directed Acyclic Graph (DAG), order the vertices from 1 to
n such that, if (u, v) is an edge, then u appears before v in the ordering.

» Equivalently, label vertices from 1 to n so that in any (directed) path from
a node labelled k, all vertices in the path have labels >k.

» Many Applications
Prerequisite requirements in a program
Scheduling of tasks for any project

>
>
» Parallel algorithms;
>

4-23 — graphBG

Topological Sorting: A first algorithm

Property exploited: An acyclic Digraph must have at least one vertex with
indegree = 0.

Prove this

» First label these verticesas 1, 2, ..., k;

» Remove these vertices and all edges incident from them
Algorithm: | » Resulting graph is again acyclic ... 3 nodes with indegree
= 0. label these nodes as k + 1,k + 2,...,

» Repeat..

Explore implementation aspects.

4-24 — graphBG

Alternative method: Topological sort from DFS

Algorithm Lst = T'sort(G)
(post-order DFS from v)
Mark = zeros(n,1); Lst=0
for v=1:n do:
if (Mark(v)== 0)
[Lst, Mark] = dfs(v, G, Lst, Mark);
end

» Depth first search
traversal of graph.

» Do a ‘post-order traver-
sal’ of the DFS tree.

end

» dfs(v, G, Lst, Mark) is the DFS(G,v) which adds v to the top of Lst after
finishing the traversal from v

4-25 — graphBG

Lst = DFS(G,v)

* Visit and Mark v;
« for all edges (v, w) do

—if w is not marked then Lst = DFS(G, w)
* Lst = [v, Lst]

» Topological order given by the final Lst array of Tsort
Explore implementation issue

Implement in matlab

Show correctness [i.e.: is this indeed a topol. order? hint: no back-
edges in a DAG]

4-26 — graphBG

GRAPH MODELS FOR SPARSE MATRICES

» See Chap. 3 of text

 Sparse matrices and graphs.
* Bipartite model, hypergraphs
* Application: back propagation

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V, E) of an n x n matrix A :

E = {(i,3)la;; # 0}

vV =1{1,2,..,N}

» G == undirected if A has a symmetric pattern

G— @

* x| %
* x| |*

x| |x x| |*x
* @4— x| %

4-28 —graph

Show the matrix pattern for the graph on
the right and give an interpretation of the path
vy, V2, V3, Vs, v1 ON the matrix

» A separator is a set Y of vertices such that the graph Gx_y is discon-
nected.

Y = {v;,v4, vs} is @ separator in the above figure

4-29 —graph

Adjacency graph of:

* *
* *

* *

For any adjacency matrix A, what is the graph of A2? [inter-

pret in terms of paths in the graph of A]

4-30 —graph

» Two graphs are isomorphic is there is a mapping between the vertices of
the two graphs that preserves adjacency.

Are the following 3 graphs isomorphic? If yes find the mappings be-
tween them.

® ®
» Graphs are identical — labels are different

» Determinig graph isomorphism is a hard problem

4-31 —graph

Bipartite graph representation

» Rows and columns are (both) represented by vertices;

» Relations only between rows and columns: Row z is connected to column
j If Qij ?é 0

* o o
x | O 7 B
* % o

*x x| O—0O

» Bipartite models used only for specific cases [e.g. rectangular matrices,
...] - By default we use the standard definition of graphs.

4-32 —graph

Interpretation of graphs of matrices A few words on hypergraphs

What is the graph of A + B (for two n x n matrices)? » Hypergraphs are very general.. Ideas borrowed from VLSI work
What is the graph of AT ? » Main motivation: to better represent communication volumes when parti-

What is the graph of A.B? tioning a graph. Standard models face many limitations

» Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

» Example: completely nonsymmetric patterns ...

» .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for
text data

4-33 —graph 4-34 —graph

V={1,...,9Yand E = {a,...,e} with A few words on computational graphs

a={1,2,3,4}, b= {3,5,6,7}, c = {4,7,8,9},)=l Br)

d={6,7,8}, ande={2,9}
» Computational graphs: graphs where Gl 2
nodes represent computations whose evalu-
x _ ation depend on other (incoming) nodes. \

> Consider the following
expression:

gz, y) =(x+y—2)*(y+1)

z=x+y
We can decompose thisas { v = y+ 1
g=(z2—2)%v

O O 0 T o

4-35 —graph 4-36 —graph

» Computational graph —
» Given z,y we want:
(a) Evaluate the nodes and
(b) derivatives w.r.t z, y

(a) is trivial - just follow the graph up - starting from the leaves (that contain =
and y)

(b): Use the chain rule — here shown for only 89 _ Ogda , dgdb
; ; : 9z — dads T dbde
using previous setting

For the above example compute values and derivatives at all nodes
whenx = —1,y = 2.

Back-Propagation

» Often we want to compute the gradient of the function at the root, once
the nodes have been evaluated

» The derivatives can be calculated by going backward (or down the tree)

» Here is a very simple example from Neural Networks

L =3(y—t)? ”
y = o(z) w\
/

z = wx+b

\L

z y

b

» Note that ¢ (desired output) and = (input) are constant.

4-37 —graph 4-38 —graph
8 . — 9f ‘)
Back-Propagation: General computational graphs > Letgy, = 5, (called ‘errors’). Then
.- Ov; 7] Ov,
vt T NG O = 0t 4 Gt 4§
. e PP ov Vg B’Uk 8Dk
k (U e Vp_o Up = Wn(ynfblynfﬁvnf‘%)
.?\b.'\‘ .:::_-’._—‘—'———50 Uy ’/
e Vj g4
* ot Uns Representation: ' a DAG > To compute the d;’s once the v;’s have -
. , . been computed (in a ‘forward’ propagation) — U} /’Ul
» Last node (v,,) is the target function. Let us rename it f. _
(vn) 9 f proceed backward. N
» Nodes v;,72 = 1,--- , e with indegree 0 are the variables » §,,0,,0,, available and dv;/dv, com- R

» Want to compute 8f/dv1,df/Bvay--- ,0Ff /Ove

> Use the chain rule. Of _0f0y; Of0u Of dvm
N Ov, Ovj0v, Ovdv, Ovy, Ouy

4-39 —graph

putable. Nore §,, = 1. - - -
'Um‘ N

-~

» However: cannot just do this in any order. Must follow a topological order
in order to obey dependencies.

4-40 —graph

4-41 —graph

