
BACKGROUND: A Brief Introduction

to Graph Theory

• General definitions; Representations;

• Graph Traversals;

• Topological sort;

Graphs – definitions & representations

ä Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V,E) with
E ⊂ V × V . So G represents a binary relation. The graph is undirected
if the binary relation is symmetric. It is directed otherwise. V is the vertex
set and E is the edge set.

If R is a binary relation between elements in V then, we can represent it by
a graph G = (V,E) as follows:

(u, v) ∈ E ↔ u R v

Undirected graph↔ symmetric relation

4-2 – graphBG

Left: (1 R 2); (4 R 1); (2 R 3); (3
R 2); (3 R 4)

Right: (1 R 2); (2 R 3); (3 R 4); (4
R 1)

1 2

34

1

3

2

4

-1 Given the numbers 5, 3, 9, 15, 16, show the two graphs representing
the relations

R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [mod(x,3) = mod(y,3)]

ä |E| ≤ |V |2. For undirected graphs: |E| ≤ |V |(|V |+ 1)/2.

ä A sparse graph is one for which |E| � |V |2.

4-3 – graphBG

Graphs – Examples and applications

1. Airport connection system: (a) R (b) if there is a non-stop flight from (a) to
(b).

2. Highway system;

3. Computer Networks;

4. Electrical circuits;

5. Traffic Flow;

6. Social Networks;

7. Sparse matrices;

...
4-4 – graphBG

Basic Terminology & notation:

ä If (u, v) ∈ E, then v is adjacent to u. The edge (u, v) is incident to u
and v.

ä If the graph is directed, then (u, v) is an outgoing edge from u and
incoming edge to v

ä Adj(i) = {j|j adjacent to i}

ä The degree of a vertex v is the number of edges incident to v. Can also
define the indegree and outdegree. (Sometimes self-edge i→ i omitted)

ä |S| is the cardinality of set S [so |Adj(i)| == deg(i)]

ä A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊂ V and E′ ⊂ E.

4-5 – graphBG

Representations of Graphs

ä A graph is nothing but a collection of vertices (indices from 1 to n), each
with a set of its adjacent vertices [in effect a ’sparse matrix without values’]

ä Therefore, can use any of the sparse matrix storage formats - omit the
real values arrays.

Adjacency matrix Assume V =

{1, 2, · · · , n}. Then the adjacency matrix
of G = (V,E) is the n × n matrix, with
entries:

ai,j =

{
1 if (i, j) ∈ E
0 Otherwise

4-6 – graphBG

Representations of Graphs (cont.)

Example:




1

1

1 1

1







1 1

1 1

1 1

1 1




1 2

34

1

3

2

4

4-7 – graphBG

Dynamic representation: Linked lists

1

2

3

4

5
6

Null

Null

Null

Null

Null

Null

ä An array of linked lists. A linked list associated with vertex i, contains all
the vertices adjacent to vertex i.

ä General and concise for ’sparse graphs’ (the most practical situations) -
but not economical for use in sparse matrix methods
4-8 – graphBG

More terminology & notation

ä For a given Y ⊂ X, the section graph of Y is the subgraph GY =

(Y,E(Y)) where E(Y) = {(x, y) ∈ E|x ∈ Y, y in Y }

ä A section graph is a clique if all the nodes in the subgraph are pairwise
adjacent (→ dense block in matrix)

ä A path is a sequence of vertices w0, w1, . . . , wk such that (wi, wi+1) ∈ E
for i = 0, . . . , k − 1.

ä The length of the path w0, w1, . . . , wk is k (# of edges in the path)

ä A cycle is a closed path, i.e., a path with wk = w0.

ä A graph is acyclic if it has no cycles.

4-9 – graphBG

-2 Find cycles in this graph:
1

2

3

5

4

7 6

A path in an indirected graph
1

2

3

5

4

7 6

ä A path w0, . . . , wk is simple if the vertices w0, . . . , wk are distinct (except
that we may have w0 = wk for cycles).

ä An undirected graph is connected if there is path from every vertex to
every other vertex.

ä A digraph with the same property is said to be strongly connected

4-10 – graphBG

ä The undirected form of a directed graph the undirected graph obtained by
removing the directions of all the edges.

ä Another term used “symmetrized” form -

ä A directed graph whose undirected form is connected is said to be weakly
connected or connected.

ä Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic
& connected

ä Forest = a collection of trees

ä In a rooted tree one specific vertex is designated as a root.

ä Root determines orientation of the tree edges in parent-child relation

4-11 – graphBG

Root

3

7

9

2

5

4

6

8

10

1

3

7

9

2

5

4

6

8

10

1Root

ä Parent-Child relation: immediate neighbors of root are children. Root is
their parent. Recursively define children-parents

ä In example: v3 is parent of v6, v8 and v6, v8 are chidren of v3.

ä Nodes that have no children are leaves. In example: v10, v7, v8, v4

ä Descendent, ancestors, ...

4-12 – graphBG

Tree traversals

ä Tree traversal is a process of visiting all vertices in a tree. Typically
traversal starts at root.

ä Want: systematic traversals of all nodes of tree – moving from a node to
a child or parent

ä Preorder traversal: Visit parent before children [recursively]

In example: v1, v2, v9, v10, v3, v8, v6, v7, v5, v4

ä Postorder traversal: Visit children before parent [recursively]

In example : v10, v9, v2, v8, v7, v6, v3, v4, v5, v1

4-13 – graphBG

Graph Traversals – Depth First Search

ä Issue: systematic way of visiting all nodes of a general graph

ä Two basic methods: Breadth First Search (wll’s see later) & ...

ä Depth-First Search

Algorithm List = DFS(G, v) (DFS from v)

• Visit and Mark v;

• for all edges (v, w) do

– if w is not marked then List = DFS(G,w)

– Add v to top of list produced above

ä If G is undirected and connected, all nodes will be visited

ä If G is directed and strongly connected, all nodes will be visited
4-14 – graphBG

Depth First Search – undirected graph example

ä Assume adjacent nodes are listed
in alphabetical order.
-3 DFS traversal from A ?

A

 B C

D

E F

G

4-15 – graphBG

Depth First Search – directed graph example

A

 B C

D

E F

G

ä Assume adjacent nodes are
listed in alphabetical order.
-4 DFS traversal from A?

NOTE: We will now use a column-
oriented graph representation:

j → i if aij 6= 0

4-16 – graphBG

function [Lst, Mark] = dfs(u, A, Lst, Mark)
%% function [Lst, Mark] = dfs(u, A, Lst, Mark)
%% dfs from node u -- Recursive
%%-----------------------------------
[ii, jj, rr] = find(A(:,u));
Mark(u) = 1;
for k=1:length(ii)

v = ii(k);
if (˜Mark(v))

[Lst, Mark] = dfs(v, A, Lst, Mark);
end

end
Lst = [u,Lst]

4-17 – graphBG

Depth-First-Search Tree: Consider the parent-child relation: v is a parent of
u if u was visited from v in the depth first search algorithm. The (directed)
graph resulting from this binary relation is a tree called the Depth-First-
Search Tree. To describe tree: only need the parents list.

ä To traverse all the graph we need a DFS(v,G) from each node v that has
not been visited yet – so add another loop. Refer to this as

DFS(G)

ä When a new vertex is visited in DFS, some work is done. Example: we
can build a stack of nodes visited to show order (reverse order: easier) in
which the node is visited.

4-18 – graphBG

EXAMPLE 3 5 We assume adjacency list
o o is in increasing order.
| | [e.g: Adj(4)=(1,5,6,7)]
| |
| |4 6

1 o-----o-----o
/ \ | /
/ \ | /

/ \ | /
/ \ | /

/ \|/
2 o 7 o

DFS traversal: 1 --> 2 --> 3 --> 4 --> 5 --> 6 --> 7
Parents list: 1 1 1 4 4 6

3 o o 5
| |
| |4 6

1 o------o------o <----- Depth First
/ / Search Tree
/ /

2 o 7 o

4-19 – graphBG

Back edges, forward edges, and cross edges

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

B

G

C

D

E F

A

ä Thick red lines: DFS traversal tree from
A
ä A→ F is a Forward edge
ä F → B is a Back edge
ä C → B and G→ F are Cross-edges.

4-20 – graphBG

ä Consider the ‘List’
produced by DFS.
Lst=[A, C, G, B, D, F, E]

ä Order in list is important
for some algorithms
ä Notice: Label nodes in
List from 1 to n . Then:

A

 B C

D

E F

G

• Tree-edges / Forward edges : labels increase in→

• Cross edges : labels in/de-crease in→ [depends on labeling]

• Back-edges : labels decrease in→

4-21 – graphBG

Properties of Depth First Search

ä If G is a connected undirected (or strongly connected) graph, then each
vertex will be visited once and each edge will be inspected at least once.

ä Therefore, for a connected undirected graph, The cost of DFS is O(|V |+
|E|)

ä If the graph is undirected, then there are no cross-edges. (all non-tree
edges are called ‘back-edges’)

Theorem: A directed graph is acyclic iff a DFS search of G yields no back-
edges.

ä Terminology: Directed Acyclic Graph or DAG

4-22 – graphBG

Topological Sort

Problem: Given a Directed Acyclic Graph (DAG), order the vertices from 1 to
n such that, if (u, v) is an edge, then u appears before v in the ordering.

ä Equivalently, label vertices from 1 to n so that in any (directed) path from
a node labelled k, all vertices in the path have labels >k.

ä Many Applications

ä Prerequisite requirements in a program

ä Scheduling of tasks for any project

ä Parallel algorithms;

ä ...
4-23 – graphBG

Topological Sorting: A first algorithm

Property exploited: An acyclic Digraph must have at least one vertex with
indegree = 0.

-5 Prove this

Algorithm:

ä First label these vertices as 1, 2, . . . , k;
ä Remove these vertices and all edges incident from them
ä Resulting graph is again acyclic ... ∃ nodes with indegree
= 0. label these nodes as k + 1, k + 2, . . . ,

ä Repeat..

-6 Explore implementation aspects.

4-24 – graphBG

Alternative method: Topological sort from DFS

ä Depth first search
traversal of graph.
ä Do a ‘post-order traver-
sal’ of the DFS tree.

Algorithm Lst = Tsort(G)

(post-order DFS from v)
Mark = zeros(n,1); Lst = ∅
for v=1:n do:

if (Mark(v)== 0)
[Lst, Mark] = dfs(v, G, Lst, Mark);

end
end

ä dfs(v, G, Lst, Mark) is the DFS(G,v) which adds v to the top of Lst after
finishing the traversal from v

4-25 – graphBG

Lst = DFS(G,v)

• Visit and Mark v;

• for all edges (v, w) do

– if w is not marked then Lst = DFS(G,w)

• Lst = [v, Lst]

ä Topological order given by the final Lst array of Tsort

-7 Explore implementation issue

-8 Implement in matlab

-9 Show correctness [i.e.: is this indeed a topol. order? hint: no back-
edges in a DAG]

4-26 – graphBG

GRAPH MODELS FOR SPARSE MATRICES

• See Chap. 3 of text

• Sparse matrices and graphs.

• Bipartite model, hypergraphs

• Application: back propagation

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V,E) of an n× n matrix A :

V = {1, 2,, N} E = {(i, j)|aij 6= 0}

ä G == undirected if A has a symmetric pattern

Example:




?

?

? ?

?




1 2

34




? ?

? ?

? ?

? ?




1

3

2

4

4-28 – graph

-10 Show the matrix pattern for the graph on
the right and give an interpretation of the path
v4, v2, v3, v5, v1 on the matrix

1

2

3

5

4

7 6

ä A separator is a set Y of vertices such that the graph GX−Y is discon-
nected.

Example: Y = {v3, v4, v5} is a separator in the above figure

4-29 – graph

Example: Adjacency graph of:

A =




? ?

? ?

? ? ? ?

? ?

? ?

? ?




.

Example: For any adjacency matrix A, what is the graph of A2? [inter-
pret in terms of paths in the graph of A]

4-30 – graph

ä Two graphs are isomorphic is there is a mapping between the vertices of
the two graphs that preserves adjacency.

-11 Are the following 3 graphs isomorphic? If yes find the mappings be-
tween them.

1

23

4

5
6 36

4 5

1 2
1

2 3

4 5

6

ä Graphs are identical – labels are different

ä Determinig graph isomorphism is a hard problem

4-31 – graph

Bipartite graph representation

ä Rows and columns are (both) represented by vertices;

ä Relations only between rows and columns: Row i is connected to column
j if aij 6= 0

Example:




?

?

? ?

? ?

? ?




ä Bipartite models used only for specific cases [e.g. rectangular matrices,
...] - By default we use the standard definition of graphs.

4-32 – graph

Interpretation of graphs of matrices

-12 What is the graph of A+B (for two n× n matrices)?

-13 What is the graph of AT ?

-14 What is the graph of A.B?

4-33 – graph

A few words on hypergraphs

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes when parti-
tioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

ä Example: completely nonsymmetric patterns ...

ä .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for
text data

4-34 – graph

Example: V = {1, . . . , 9} and E = {a, . . . , e} with
a = {1, 2, 3, 4}, b = {3, 5, 6, 7}, c = {4, 7, 8, 9},
d = {6, 7, 8}, and e = {2, 9}

6 6

l

6 6

l

l
l

6

66

66

l

1

2

3

4

5

67

8
9

a b

c
d

e

net e

net d

Boolean matrix:
1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e

4-35 – graph

A few words on computational graphs

ä Computational graphs: graphs where
nodes represent computations whose evalu-
ation depend on other (incoming) nodes.

a(x,y,z) b(x,y,z)

f(x,y,z)

f(x,y,z) = g(a(x,y,z), b(x,y,z))

ä
Consider the following
expression:

g(x, y) = (x+ y − 2) ∗ (y + 1)

We can decompose this as





z = x+ y

v = y + 1

g = (z − 2) ∗ v

4-36 – graph

ä Computational graph→
ä Given x, y we want:
(a) Evaluate the nodes and
(b) derivatives w.r.t x, y

x y

v = y+1
z = x+y

g = (z−2)*v

(a) is trivial - just follow the graph up - starting from the leaves (that contain x
and y)

(b): Use the chain rule – here shown for x only
using previous setting

∂g
∂x

= ∂g
∂a
da
dx

+ ∂g
∂b
db
dx

-15 For the above example compute values and derivatives at all nodes
when x = −1, y = 2.

4-37 – graph

Back-Propagation

ä Often we want to compute the gradient of the function at the root, once
the nodes have been evaluated

ä The derivatives can be calculated by going backward (or down the tree)

ä Here is a very simple example from Neural Networks





L = 1
2
(y − t)2

y = σ(z)

z = wx+ b

x

w

b

z y
L

t

ä Note that t (desired output) and x (input) are constant.

4-38 – graph

Back-Propagation: General computational graphs

Representation: a DAG

ä Last node (vn) is the target function. Let us rename it f .

ä Nodes vi, i = 1, · · · , e with indegree 0 are the variables

ä Want to compute ∂f/∂v1, ∂f/∂v2, · · · , ∂f/∂ve

ä Use the chain rule.
−→

∂f

∂vk
=
∂f

∂vj

∂vj

∂vk
+
∂f

∂vl

∂vl

∂vk
+
∂f

∂vm

∂vm

∂vk

4-39 – graph

ä Let δk = ∂f
∂vk

(called ‘errors’). Then

δk = δj
∂vj

∂vk
+ δl

∂vl

∂vk
+ δm

∂vm

∂vk

ä To compute the δk’s once the vj’s have
been computed (in a ‘forward’ propagation) –
proceed backward.
ä δj, δl, δm available and ∂vi/∂vk com-
putable. Nore δn ≡ 1.

ä However: cannot just do this in any order. Must follow a topological order
in order to obey dependencies.

4-40 – graph

Example:

4-41 – graph

